prompt 的影响因素

Motivation

  • Prompt 中 Example 的排列顺序对模型性能有较大影响(即使已经校准参见好的情况下,选取不同的排列顺序依然会有很大的方差):
  • 校准可以大幅度提高准确率,但是不同的排列顺序方差依然很大

Analysis

  • 提出探测集(probing set),流程如下:

    1. 训练集 $S={(x_i, y_i)}$,模板转换函数(将一组数据转换为自然语言) $t_i=\tau (x_i,y_i)=input:x_i,type:y_y$,因此自然语言数据集 $S'=\{t_i\}$;
    2. 排列方程集合 $\mathfrak{F}=\{f_m\},m=1\rightarrow n!$,$f_m(S')=c_m$ 为一种训练数据的组合顺序($m=1\rightarrow n!$);
    3. 对于每一种排列组合$c_m$,使用语言模型进行去预测后续的句子(注意这里没有加上测试集的问题,纯粹对训练集进行组合),得到模型生成的新的 example:$g_m\propto P(...|c_m;\theta)$,$\theta$为语言模型的参数,对生成序列解析得到模型生成的数据集:$D=\{\tau ^{-1}(g_m)\},m=1\rightarrow n!$。
  • 针对探测集提出两种评估 prompt 的指标:
  • Global Entropy

  • 对探测集合中探测数据$(x'_i, y'_i)\in D$(生成的 label 不需要,不具有参考意义),选择一种排列组合(上下文)$c_m$进行推理得到$\hat{y_{i,m}}$,即:
  • 对探测集中的每个探测数据进行预测,求得每个预测的种类占探测集的比例:
  • 最后求熵(熵反应了预测各个种类的均匀程度,预测的正确与否并不重要,假如熵非常小,说明预测的结果 bias 非常大):
  • Local Entropy

  • 与全局熵类似,只不过先求熵再求和。
  • 为什么上面的方法有用呢?

  • 个人猜想:你能得到的训练集是非常有限的,假设改变 example 的排列顺序会使 output distribution 发生改变。假如你只有 4 个 example,那么你最多能模拟出来 24 种不同的  distribution(很多模拟不出来但是没有办法,受数据制约),也就是说你得到的包含 24 个数据的探测集其实就是尽最大能力准备出来的多样数据集。如果在这些探测数据上,某个排序$c_m$预测的结果集合很均匀(各种类别数量差不多),那么说明这种排序 rebust 比较强(这种排序没有倾向性,导致生成的问题都是中性的,生成什么label的可能性都一样)。

论文笔记 - Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity的更多相关文章

  1. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  2. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  5. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  6. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  7. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  8. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  9. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

随机推荐

  1. 03-MyBatisPlus的CRUD 接口

    一.insert 1.插入操作 @RunWith(SpringRunner.class) @SpringBootTest public class CRUDTests { @Autowired pri ...

  2. 使用J2EE 登录实例开发

    我们先了解下Servlet的生命周期 Servlet部署在容器里,其生命周期由容器管理. 概括为以下几个阶段: 1)容器加载Servlet类. 当第一次有Web客户请求Servlet服务或当Web服务 ...

  3. axos在async模式下如何中断请求

    main.js import axios from 'axios' Vue.prototype.$http = axios Test.vue <template> <div clas ...

  4. Solutions:Elastic workplace 搜索:随时随地搜索所有内容 (一)

  5. 获取Docker容器名称和ID

    docker ps --format "{{.Names}}" docker ps -q

  6. 使用ConfigMap配置您的应用程序

    转载自:https://kuboard.cn/learning/k8s-intermediate/config/config-map.html ConfigMap 作为 Kubernetes API ...

  7. 【前端必会】NVM,管理你的node版本

    介绍 用nvm管理node,可以随时修改node版本 使用 下载nvm https://github.com/coreybutler/nvm-windows/releases/tag/1.1.9 安装 ...

  8. PAT (Basic Level) Practice 1027 打印沙漏 分数 20

    本题要求你写个程序把给定的符号打印成沙漏的形状.例如给定17个"*",要求按下列格式打印 ***** *** * *** *****   所谓"沙漏形状",是指 ...

  9. 20220929-ArrayList扩容机制源码分析

    示例代码 public class ArrayListSource { public static void main(String[] args) { ArrayList arrayList = n ...

  10. C#-10 事件

    一 发布者和订阅者 很多时候都有这种需求,当一个特定的程序事件发生时,程序的其他部分可以得到该事件已经发生的通知. 发布者/订阅者模式可以满足这种需求. 发布者:发布某个事件的类或结构,其他类可以在该 ...