基于Stable Diffusion的哪些图像操作们:

  • Text-To-Image generation:StableDiffusionPipeline
  • Image-to-Image text guided generation:StableDiffusionImg2ImgPipeline
  • In-painting: StableDiffusionInpaintPipeline
  • text-guided image super-resolution: StableDiffusionUpscalePipeline
  • generate variations from an input image:StableDiffusionImageVariationPipeline
  • image editing by following text instructions:StableDiffusionInstructPix2PixPipeline
  • ......

辅助函数

import requests
from PIL import Image
from io import BytesIO def show_images(imgs, rows=1, cols=3):
assert len(imgs) == rows*cols
w_ori, h_ori = imgs[0].size
for img in imgs:
w_new, h_new = img.size
if w_new != w_ori or h_new != h_ori:
w_ori = max(w_ori, w_new)
h_ori = max(h_ori, h_new) grid = Image.new('RGB', size=(cols*w_ori, rows*h_ori))
grid_w, grid_h = grid.size for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w_ori, i//cols*h_ori))
return grid def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")

Text-To-Image

根据文本生成图像,在diffusers使用StableDiffusionPipeline实现,必要输入为prompt,示例代码:

from diffusers import StableDiffusionPipeline

image_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")

device = "cuda"
image_pipe.to(device) prompt = ["a photograph of an astronaut riding a horse"] * 3
out_images = image_pipe(prompt).images
for i, out_image in enumerate(out_images):
out_image.save("astronaut_rides_horse" + str(i) + ".png")

示例输出:

Image-To-Image

根据文本prompt和原始图像,生成新的图像。在diffusers中使用StableDiffusionImg2ImgPipeline类实现,可以看到,pipeline的必要输入有两个:promptinit_image。示例代码:

import torch
from diffusers import StableDiffusionImg2ImgPipeline device = "cuda"
model_id_or_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe = pipe.to(device) url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
init_image = download_image(url)
init_image = init_image.resize((768, 512)) prompt = "A fantasy landscape, trending on artstation" images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images grid_img = show_images([init_image, images[0]], 1, 2)
grid_img.save("fantasy_landscape.png")

示例输出:

In-painting

给定一个mask图像和一句提示,可编辑给定图像的特定部分。使用StableDiffusionInpaintPipeline来实现,输入包含三部分:原始图像,mask图像和一个prompt,

示例代码:

from diffusers import StableDiffusionInpaintPipeline

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512)) pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16)
pipe = pipe.to("cuda") prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
images = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images
grid_img = show_images([init_image, mask_image, images[0]], 1, 3)
grid_img.save("overture-creations.png")

示例输出:

Upscale

对低分辨率图像进行超分辨率,使用StableDiffusionUpscalePipeline来实现,必要输入为prompt和低分辨率图像(low-resolution image),示例代码:

from diffusers import StableDiffusionUpscalePipeline

# load model and scheduler
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16, cache_dir="./models/")
pipeline = pipeline.to("cuda") # let's download an image
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png"
low_res_img = download_image(url)
low_res_img = low_res_img.resize((128, 128)) prompt = "a white cat"
upscaled_image = pipeline(prompt=prompt, image=low_res_img).images[0]
grid_img = show_images([low_res_img, upscaled_image], 1, 2)
grid_img.save("a_white_cat.png")
print("low_res_img size: ", low_res_img.size)
print("upscaled_image size: ", upscaled_image.size)

示例输出,默认将一个128 x 128的小猫图像超分为一个512 x 512的:

默认是将原始尺寸的长和宽均放大四倍,即:

input: 128 x 128 ==> output: 512 x 512
input: 64 x 256 ==> output: 256 x 1024
...

个人感觉,prompt没有起什么作用,随便写吧。

关于此模型的详情,参考

Instruct-Pix2Pix

重要参考

根据输入的指令prompt对图像进行编辑,使用StableDiffusionInstructPix2PixPipeline来实现,必要输入包括promptimage,示例代码如下:

import torch
from diffusers import StableDiffusionInstructPix2PixPipeline model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, cache_dir="./models/")
pipe = pipe.to("cuda") url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
image = download_image(url) prompt = "make the mountains snowy"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images
grid_img = show_images([image, images[0]], 1, 2)
grid_img.save("snowy_mountains.png")

示例输出:

Diffusers中基于Stable Diffusion的哪些图像操作的更多相关文章

  1. 基于Docker安装的Stable Diffusion使用CPU进行AI绘画

    基于Docker安装的Stable Diffusion使用CPU进行AI绘画 由于博主的电脑是为了敲代码考虑买的,所以专门买的高U低显,i9配核显,用Stable Diffusion进行AI绘画的话倒 ...

  2. AI绘画提示词创作指南:DALL·E 2、Midjourney和 Stable Diffusion最全大比拼 ⛵

    作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 自然语言处理实战系列:https://www.showmeai.tech ...

  3. 使用 LoRA 进行 Stable Diffusion 的高效参数微调

    LoRA: Low-Rank Adaptation of Large Language Models 是微软研究员引入的一项新技术,主要用于处理大模型微调的问题.目前超过数十亿以上参数的具有强能力的大 ...

  4. C# 中使用Word文档对图像进行操作

    C# 中使用Word文档对图像进行操作 Download Files: ImageOperationsInWord.zip 简介 在这篇文章中我们可以学到在C#程序中使用一个Word文档对图像的各种操 ...

  5. 基于Xilinx FPGA的视频图像采集系统

    本篇要分享的是基于Xilinx FPGA的视频图像采集系统,使用摄像头采集图像数据,并没有用到SDRAM/DDR.这个工程使用的是OV7670 30w像素摄像头,用双口RAM做存储,显示窗口为320x ...

  6. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  7. 基于Jittor框架实现LSGAN图像生成对抗网络

    基于Jittor框架实现LSGAN图像生成对抗网络 生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的 ...

  8. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  9. [OpenCV实战]20 使用OpenCV实现基于增强相关系数最大化的图像对齐

    目录 1 背景 1.1 彩色摄影的一个简短而不完整的历史 1.2 OpenCV中的运动模型 2 使用增强相关系数最大化(ECC)的图像对齐 2.1 findTransformECC在OpenCV中的示 ...

  10. 从 GPT2 到 Stable Diffusion:Elixir 社区迎来了 Hugging Face

    上周,Elixir 社区向大家宣布,Elixir 语言社区新增从 GPT2 到 Stable Diffusion 的一系列神经网络模型.这些模型得以实现归功于刚刚发布的 Bumblebee 库.Bum ...

随机推荐

  1. 网络基础与osi七层与TCP/IP协议

     一 什么是网络 网络:计算机网络是一组计算机或网络设备通过有形 的线缆或无形的媒介如无线,连接起来,按照一定的 规则,进行通信的集合. 通信,是指人与人.人与物.物与物之间通过某种媒 介和行为进行的 ...

  2. typora软件下载跟安装

    typora软件介绍 typora是一款文本编辑器 是目前非常火爆的文本编辑器 [下载地址](Typora 官方中文站 (typoraio.cn)) 安装操作 pj链接 注意:不要更新!!! 安装 路 ...

  3. 前后端开发必会的 HTTP 协议“十全大补丸”(万字长文)

    本文全面介绍了 HTTP 协议相关知识,包括 HTTP 请求报文.响应报文.持久连接.缓存.Cookie 以及 HTTP 版本升级等! HTTP 协议全称为 HyperText Transfer Pr ...

  4. 【转载】C#使用Dotfuscator混淆代码以及加密

    C#编写的代码如果不进行一定程度的混淆和加密,那么是非常容易被反编译进行破解的,特别是对于一些商业用途的C#软件来说,因为盯着的人多,更是极易被攻破.使用Dotfuscator可以实现混淆代码.变量名 ...

  5. java中json字符串与实体类对象相互转换

    1.问题描述 有一个需求是这样的,把实体类转为Json字符串存入redis中,然后再把redis中存放的实体类Json字符串插入数据库中.因此需要涉及到json字符串与实体类对象的相互转换. 2.产生 ...

  6. [OpenCV实战]46 在OpenCV下应用图像强度变换实现图像对比度均衡

    本文主要介绍基于图像强度变换算法来实现图像对比度均衡.通过图像对比度均衡能够抑制图像中的无效信息,使图像转换为更符合计算机或人处理分析的形式,以提高图像的视觉价值和使用价值.本文主要通过OpenCV ...

  7. LeetCode-03 无重复字符的最长子串(Longest Substring Without Repeating Characters)

    题目描述 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 示例 示例  1: 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 &qu ...

  8. python连接kafka-2.0

    import sysimport timeimport osimport jsonimport vertica_pythonimport loggingimport pykafkafrom pykaf ...

  9. 使用IIS配置代理,转发POST和GET访问,配置IIS接口转发失效问题处理

    先说一下可能引发配置失败的原因:大概率是你的Application Request Routing没有配置好,或者你的正则表达没有搞好,往下看步骤自己对照哇~ 1.确保服务器已经安装IIS 2.下载U ...

  10. Phi的反函数

    P4780 Phi的反函数 Phi(\(\varphi\) )定义 \(\varphi(n)\) 代表从1-n所有与n互质的数的个数 求\(\varphi(n)\) 普通求法: 首先将n唯一分解为 \ ...