Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明

作者: Grey

原文地址:

博客园:Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明

CSDN:Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明

基于 JDK 的 API 自己实现 NIO 编程,需要一个线程池来不断监听端口。接收到新连接之后,这条连接上数据的读写会在另外一个线程池中进行。

在 Netty 实现的服务端中, 有如下经典代码

EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
// 设置服务端的线程模型。
// bossGroup 负责不断接收新的连接,将新的连接交给 workerGroup 来处理。
b.group(bossGroup, workerGroup)

其中 bossGroup 对应的就是监听端口的线程池,在绑定一个端口的情况下,这个线程池里只有一个线程;workerGroup 对应的是连接的数据读写的线程。

通过 debug 并设置断点的方式,我们来查看下创建 NioEventLoopGroup 的核心过程,

在没有指定线程数的情况下new NioEventLoopGroup()会调用如下构造方法

    public NioEventLoopGroup() {
this(0);
}

即传入 0,然后一路跟下去,发现调用了MultithreadEventLoopGroup的如下逻辑

    protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
}

由于我们传入的nThreads == 0,所以获取DEFAULT_EVENT_LOOP_THREADS的值,在MultithreadEventLoopGroup中,DEFAULT_EVENT_LOOP_THREADS的初始化逻辑如下

private static final int DEFAULT_EVENT_LOOP_THREADS;

static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2)); if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}

nThreads == 0的情况下,那么 NioEventLoopGroup 的默认线程的个数为 CPU 的核数乘以 2,即:NettyRuntime.availableProcessors() * 2

继续跟下去,可以看到 NioEventLoopGroup 调用了如下的构造方法,其核心代码如下

protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
……
// 创建ThreadPerTaskExecutor:ThreadPerTaskExecutor表示每次调用execute()方法的时候,都会创建一个线程。
if (executor == null) {
executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
}
……
// 2.创建NioEventLoop:NioEventLoop对应线程池里线程的概念,这里其实就是用一个for循环创建的。
children = new EventExecutor[nThreads];
……
for (int i = 0; i < nThreads; i ++) {
……
children[i] = newChild(executor, args);
……
} // 3.创建线程选择器:线程选择器的作用是确定每次如何从线程池中选择一个线程,也就是每次如何从NioEventLoopGroup中选择一个NioEventLoop。
chooser = chooserFactory.newChooser(children); ……
}

这个构造方法包括了三个内容

  1. 创建 ThreadPerTaskExecutor:ThreadPerTaskExecutor 主要是用来创建线程。

  2. 创建 NioEventLoop:NioEventLoop 对应线程池里线程的概念。

  3. 创建线程选择器:线程选择器的作用是确定每次如何从线程池中选择一个线程,也就是每次如何从 NioEventLoopGroup 中选择一个 NioEventLoop。

首先,我们看 ThreadPerTaskExecutor 如何创建线程,核心代码如下

public final class ThreadPerTaskExecutor implements Executor {
private final ThreadFactory threadFactory; public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
this.threadFactory = ObjectUtil.checkNotNull(threadFactory, "threadFactory");
} @Override
public void execute(Runnable command) {
threadFactory.newThread(command).start();
}
}

这里的 threadFactory 就是前面传入的newDefaultThreadFactory(),这个方法定义了默认线程的一些基本信息,一路追踪到DefaultThreadFactory

    public DefaultThreadFactory(String poolName, boolean daemon, int priority, ThreadGroup threadGroup) {
ObjectUtil.checkNotNull(poolName, "poolName"); if (priority < Thread.MIN_PRIORITY || priority > Thread.MAX_PRIORITY) {
throw new IllegalArgumentException(
"priority: " + priority + " (expected: Thread.MIN_PRIORITY <= priority <= Thread.MAX_PRIORITY)");
} prefix = poolName + '-' + poolId.incrementAndGet() + '-';
this.daemon = daemon;
this.priority = priority;
this.threadGroup = threadGroup;
} // 创建线程,将 JDK 的 Runnable 包装成 FastThreadLocalRunnable
@Override
public Thread newThread(Runnable r) {
Thread t = newThread(FastThreadLocalRunnable.wrap(r), prefix + nextId.incrementAndGet());
try {
if (t.isDaemon() != daemon) {
t.setDaemon(daemon);
} if (t.getPriority() != priority) {
t.setPriority(priority);
}
} catch (Exception ignored) {
// Doesn't matter even if failed to set.
}
return t;
}

可以看到 Netty 的线程实体是由 ThreadPerTaskExecutor 创建的,ThreadPerTaskExecutor 每次执行 execute 的时候都会创建一个 FastThreadLocalThread 的线程实体。

接下来是创建 NioEventLoop,Netty 使用 for 循环来创建 nThreads 个 NioEventLoop,通过前面的分析,我们可能已经猜到,一个NioEventLoop对应一个线程实体,即 Netty 自己封装的 FastThreadLocalThread。

来到 NioEventLoop 的构造方法

    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler,
EventLoopTaskQueueFactory taskQueueFactory, EventLoopTaskQueueFactory tailTaskQueueFactory) {
super(parent, executor, false, newTaskQueue(taskQueueFactory), newTaskQueue(tailTaskQueueFactory),
rejectedExecutionHandler);
......
final SelectorTuple selectorTuple = openSelector();
......
}

即创建了一个 Selector,Selector 是 NIO 编程里最核心的概念,一个 Selector 可以将多个连接绑定在一起,负责监听这些连接的读写事件,即多路复用。

继续往上调用构造方法

    protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor,
boolean addTaskWakesUp, Queue<Runnable> taskQueue,
RejectedExecutionHandler rejectedHandler) {
......
this.taskQueue = ObjectUtil.checkNotNull(taskQueue, "taskQueue");
......
}

NioEventLoop 重写了 taskQueue 的创建逻辑

    private static Queue<Runnable> newTaskQueue0(int maxPendingTasks) {
// This event loop never calls takeTask()
return maxPendingTasks == Integer.MAX_VALUE ? PlatformDependent.<Runnable>newMpscQueue()
: PlatformDependent.<Runnable>newMpscQueue(maxPendingTasks);
} private static Queue<Runnable> newTaskQueue(
EventLoopTaskQueueFactory queueFactory) {
if (queueFactory == null) {
return newTaskQueue0(DEFAULT_MAX_PENDING_TASKS);
}
return queueFactory.newTaskQueue(DEFAULT_MAX_PENDING_TASKS);
}

即创建一个 MPSC 队列,

MPSC 队列,Selector,NioEventLoop,这三者均为一对一关系。

接下来是创建线程选择器,

chooser = chooserFactory.newChooser(children);

这里的选择器是

    protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
}

中的DefaultEventExecutorChooserFactory.INSTANCE,进入

    private static boolean isPowerOfTwo(int val) {
return (val & -val) == val;
}
@Override
public EventExecutorChooser newChooser(EventExecutor[] executors) {
if (isPowerOfTwo(executors.length)) {
return new PowerOfTwoEventExecutorChooser(executors);
} else {
return new GenericEventExecutorChooser(executors);
}
}

Netty 通过判断 NioEventLoopGroup 中的 NioEventLoop 是否是2的幂来创建不同的线程选择器,不管是哪一种选择器,最终效果都是从第一个 NioEvenLoop 遍历到最后一个NioEventLoop,再从第一个开始,如此循环。GenericEventExecutorChooser 通过简单的累加取模来实现循环的逻辑,而 PowerOfTowEventExecutorChooser 是通过位运算实现的。

    private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
......
@Override
public EventExecutor next() {
return executors[idx.getAndIncrement() & executors.length - 1];
}
......
} private static final class GenericEventExecutorChooser implements EventExecutorChooser {
......
@Override
public EventExecutor next() {
return executors[(int) Math.abs(idx.getAndIncrement() % executors.length)];
}
......
}

最后总结一下,NioEventLoopGroup 的创建核心就三步

  1. 创建ThreadPerTaskExecutor;

  2. 创建NioEventLoop;

  3. 创建线程选择器。

完整代码见:hello-netty

本文所有图例见:processon: Netty学习笔记

更多内容见:Netty专栏

参考资料

跟闪电侠学 Netty:Netty 即时聊天实战与底层原理

深度解析Netty源码

Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明的更多相关文章

  1. Java内存管理-掌握类加载器的核心源码和设计模式(六)

    勿在流沙筑高台,出来混迟早要还的. 做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 上一篇文章介绍了类加载器分类以及类加载器的双亲委派模型,让我们能够从整体上对类加载器有 ...

  2. javaweb期末项目-stage2-项目创建、配置、接口设计和功能实现(含核心源码)

    项目的创建.配置.接口设计和功能实现(含核心代码).rar--下载 说明:解压密码为袁老师的全名拼音(全小写) 相关链接: 项目结构:https://www.cnblogs.com/formyfish ...

  3. Android版数据结构与算法(五):LinkedHashMap核心源码彻底分析

    版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 上一篇基于哈希表实现HashMap核心源码彻底分析 分析了HashMap的源码,主要分析了扩容机制,如果感兴趣的可以去看看,扩容机制那几行最难懂的 ...

  4. iOS 开源库系列 Aspects核心源码分析---面向切面编程之疯狂的 Aspects

    Aspects的源码学习,我学到的有几下几点 Objective-C Runtime 理解OC的消息分发机制 KVO中的指针交换技术 Block 在内存中的数据结构 const 的修饰区别 block ...

  5. HashMap的结构以及核心源码分析

    摘要 对于Java开发人员来说,能够熟练地掌握java的集合类是必须的,本节想要跟大家共同学习一下JDK1.8中HashMap的底层实现与源码分析.HashMap是开发中使用频率最高的用于映射(键值对 ...

  6. 手撕spring核心源码,彻底搞懂spring流程

    引子 十几年前,刚工作不久的程序员还能过着很轻松的日子.记得那时候公司里有些开发和测试的女孩子,经常有问题解决不了的,不管什么领域的问题找到我,我都能帮她们解决.但是那时候我没有主动学习技术的意识,只 ...

  7. 并发编程之 SynchronousQueue 核心源码分析

    前言 SynchronousQueue 是一个普通用户不怎么常用的队列,通常在创建无界线程池(Executors.newCachedThreadPool())的时候使用,也就是那个非常危险的线程池 ^ ...

  8. 6 手写Java LinkedHashMap 核心源码

    概述 LinkedHashMap是Java中常用的数据结构之一,安卓中的LruCache缓存,底层使用的就是LinkedHashMap,LRU(Least Recently Used)算法,即最近最少 ...

  9. 3 手写Java HashMap核心源码

    手写Java HashMap核心源码 上一章手写LinkedList核心源码,本章我们来手写Java HashMap的核心源码. 我们来先了解一下HashMap的原理.HashMap 字面意思 has ...

随机推荐

  1. 开发中常用的两个JSON方法

    参考文章:https://juejin.cn/post/6844903711127404557 在前端开发过程中,有两个非常有用的方法来处理 JSON 格式的内容: JSON.parse(string ...

  2. Azure Devops(十五) 使用Azure的私有Maven仓库

    上一篇文章中,我们介绍了如何使用Azure的nuget仓库,今天我们来研究一下如何使用azure给我们提供的maven仓库. 首先,我们打开azureDevops,点击到制品界面,然后选择maven. ...

  3. Java中类成员访问权限修饰符(public、protected、default、private)

    1.public(公共的): 任何类都可以进行访问(最不严格). 2.protected(保护的): 同一包内的类以及其子类可以进行访问. 3.default(缺省的): 类中不加任何访问权限限定的成 ...

  4. 11中javascrip教程教不到的小技巧

    1.过滤唯一值 Set对象类型是在ES6中引入的,配合展开操作...一起,我们可以使用它来创建一个新数组,该数组只有唯一的值. 1 const array = [1, 1, 2, 3, 5, 5, 1 ...

  5. Linux环境监控工具汇总

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. Linux 操作系统有诸多自带和第三方的监控工具,以下从不同维度来整理常用的一些监控工具. CPU top(经典的Linu ...

  6. Rider调试ASP.NET Core时报thread not gc-safe的解决方法

      新建了一个ASP.NET Core 5.0的Web API项目,当使用断点调试Host.CreateDefaultBuilder(args)时,进入该函数后查看中间变量的值,报错Evaluatio ...

  7. ZOJ 3537 (凸包 + 区间DP)(UNFINISHED)

    #include "Head.cpp" const int N = 10007; int n, m; struct Point{ int x,y; bool operator &l ...

  8. .NET异步编程模式(一)

    .NET 提供了三种异步编程模型 TAP - task-based asynchronous pattern APM - asynchronous programming model EAP - ev ...

  9. Python自学教程12-类和对象怎么用

    Python是一门现代化的编程语言,也是一门面向对象的编程语言. 现代编程语言几乎都支持面向对象编程,面向对象编程是最有效的软件编写方法之一.你可以用类和对象来表示现实当中的任何的事物和行为. 编写类 ...

  10. OSI七层模型与TCP/IP协议

    作者:菘蓝 时间:2022/9/1 ================================================================================== ...