$|S| \le 5 \times 10^5$

  • 题解

    • 这题直接用通配符匹配的套路会错,因为重复部分的$?$可能同时被当做了$0$和$1$
    • 有长度为$i$的公共前缀后缀等价于有长度为$n-i$的循环节;
    • 对于循环节$d$,只需要知道对于任意的$d|i-j$,是否存在$(s[i]='0'且s[j]='1') 或 (s[j]='0'且s[i]='1')$
    • 构造函数:$A(x) = s[x]=='0' , B(x) = s[n-1-x]=='1' $
    • 可以通过计算多项式$A \times B$判断$d==i-j$的情况;
    • 所以枚举倍数$O(nlogn)$判断即可;
    • 时间复杂度:$O(|S|log|S|)$
 #include<bits/stdc++.h>
#define ll long long
#define ld double
using namespace std;
const int N=;
const ld pi=acos(-);
struct C{
ld x,y;
C(ld _x=,ld _y=):x(_x),y(_y){};
C operator +(const C&a)const{return C(x+a.x,y+a.y);}
C operator -(const C&a)const{return C(x-a.x,y-a.y);}
C operator *(const C&a)const{return C(x*a.x-y*a.y,x*a.y+y*a.x);}
C operator /(const ld&a)const{return C(x/a,y/a);}
}a[N],b[N],c[N];
int n,t[N],L,rev[N],len;
char s[N];
void fft(C*a,int f){
for(int i=;i<len;++i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=;i<len;i<<=){
C wn=C(cos(pi/i),f*sin(pi/i));
for(int j=;j<len;j+=i<<){
C w=C(,);
for(int k=;k<i;++k,w=w*wn){
C x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
if(!~f)for(int i=;i<len;++i)a[i]=a[i]/len;
}
int main(){
// freopen("bzoj5372.in","r",stdin);
// freopen("bzoj5372.out","w",stdout);
scanf("%s",s);n=strlen(s);
for(int i=;i<n;++i)a[i]=C(s[i]=='',),b[i]=C(s[n-i-]=='',);
len=;for(;len<n<<;len<<=,L++);
for(int i=;i<len;++i)rev[i]=(rev[i>>]>>)|((i&)<<(L-));
fft(a,);fft(b,);
for(int i=;i<len;++i)c[i]=a[i]*b[i];
fft(c,-);
ll ans=1ll*n*n;
for(int i=;i<n;++i){
ans^=1ll*(n-i)*(n-i);
for(int j=i;j<n;j+=i){
if((int)(c[n-j-].x+0.1)||(int)(c[n+j-].x+0.1)){
ans^=1ll*(n-i)*(n-i);
break;
}
}
}
cout<<ans<<endl; return ;
}

loj6436【PKUSC2018】神仙的游戏的更多相关文章

  1. LOJ6436 [PKUSC2018] 神仙的游戏 【FFT】

    题目分析: 题目要求前后缀相同,把串反过来之后是一个很明显的卷积的形式.这样我们可以完成初步判断(即可以知道哪些必然不行). 然后考虑一下虽然卷积结果成立,但是存在问号冲突的情况. 箭头之间应当不存在 ...

  2. [LOJ6436][PKUSC2018]神仙的游戏

    loj description 给你一个只有01和?的字符串,问你是否存在一种把?改成01的方案使串存在一个长度为\(1-n\)的\(border\).\(n\le5\times10^5\) sol ...

  3. BZOJ5372: [Pkusc2018]神仙的游戏

    BZOJ5372: [Pkusc2018]神仙的游戏 https://lydsy.com/JudgeOnline/problem.php?id=5372 分析: 如果\(len\)为\(border\ ...

  4. BZOJ5372: PKUSC2018神仙的游戏

    传送门 Sol 自己还是太 \(naive\) 了,上来就构造多项式和通配符直接匹配,然后遇到 \(border\) 相交的时候就 \(gg\) 了 神仙的游戏蒟蒻还是玩不来 一个小小的性质: 存在长 ...

  5. bzoj 5372: [Pkusc2018]神仙的游戏

    Description 小D和小H是两位神仙.他们经常在一起玩神仙才会玩的一些游戏,比如"口算一个4位数是不是完全平方数". 今天他们发现了一种新的游戏:首先称s长度为len的前缀 ...

  6. loj 6436 PKUSC2018 神仙的游戏

    传送门 好妙蛙 即串\(s\)长度为\(n\)首先考虑如果一个长度为\(len\)的\(border\)存在,当且仅当对所有\(i\in[1,len],s[i]=s[n-len+i]\),也就是所有模 ...

  7. BZOJ5372 PKUSC2018神仙的游戏(NTT)

    首先有一个想法,翻转串后直接卷积看有没有0匹配上1.但这是必要而不充分的因为在原串和翻转串中?不能同时取两个值. 先有一些结论: 如果s中长度为len的前缀是border,那么其存在|s|-len的循 ...

  8. [PKUSC2018]神仙的游戏(FFT)

    给定一个01?串,对所有len询问是否存在一种填法使存在长度为len的border. 首先有个套路的性质:对于一个长度为len的border,这个字符串一定有长度为n-len的循环节(最后可以不完整) ...

  9. [PKUSC2018]神仙的游戏

    题目 画一画就会发现一些奇诡的性质 首先如果\(len\)为一个\(\operatorname{border}\),那么必然对于\(\forall i\in [1,len]\),都会有\(s_i=s_ ...

  10. 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

    [LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...

随机推荐

  1. Google hack语法

    基础语法: 1.语法说明: inurl: 在url地址栏中显示的信息页面 intext: 显示在正文信息中的内容页面 site: 限制显示你某个域名的所有页面 filetype: 搜索文件的后缀或者扩 ...

  2. nodejs 几篇有用的文章

    深入浅出Node.js(三):深入Node.js的模块机制 http://www.infoq.com/cn/articles/nodejs-module-mechanism Node.js简单介绍并实 ...

  3. css 文字展示两行 其余的省略号显示

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. LeetCode 303. Range Sum Query - Immutable (C++)

    题目: Given an integer array nums, find the sum of the elements between indices iand j (i ≤ j), inclus ...

  5. OO学习总结与体会

    前言 经过了对于面向对象程序设计的一个月的学习,我初尝了JAVA以及面向对象程序的魅力.经历了三次难度逐渐加大的课后编程作业,我对于工程化面向对象编程以及调试有了深刻的认识与颇多感想.我写下本篇文章以 ...

  6. ME.kkkK

    ME.kkkK 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 50 40 • Estima ...

  7. 《Spring2之站立会议4》

    <Spring2之站立会议4> 昨天,对主界面进行了设计,编写了主界面的代码,把文本输入框,显示框,发送,关闭两个按钮的功能实现了: 今天,接着对主界面进行代码的编写,实现了界面的美化,从 ...

  8. TCP系列53—拥塞控制—16、Destination Metrics和Congestion Manager

    一.概述 我们之前介绍过rtt.ssthresh等变量,这些变量一般在TCP连接建立的时候有个初始值,然后随着TCP的数据交互逐渐调整到适应对应的网络状态的值.但是如果每次TCP建立连接都依靠默认初始 ...

  9. Scrum会议

    小组名称:天天向上 项目名称:连连看 成员:王森(Master) 张金生 张政 栾骄阳 时间:2016.10.18 会议内容: 已完成的内容: 张政排除连续点击Button会自动消失的Bug,张金生收 ...

  10. virsh 操作kvm虚拟机

    #查看你的硬件是否支持虚拟化.命令: [root@VM_166_143 data]#egrep '(vmx|svm)' /proc/cpuinfo #安装基础包 [root@VM_166_143 da ...