关于自相关、偏自相关:

一、自协方差和自相关系数
      p阶自回归AR(p)
      自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]
      自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]
 
二、平稳时间序列自协方差与自相关系数
      1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:
           r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]
      2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,
            所以DX(t)*DX(t+k)=σ2*σ2,
            所以[DX(t)*DX(t+k)]^0.5=σ2
            而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2
         简而言之,r(0)就是自己与自己的协方差,就是方差,
         所以,平稳时间序列延迟k的自相关系数ACF等于:
                p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)
     3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。
 
 三、偏相关系数
       对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响。
       为了能单纯测度x(t-k)对x(t)的影响,引进偏自相关系数的概念。
        对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。用数学语言描述就是:
      p[(x(t),x(t-k)]|(x(t-1),……,x(t-k+1)={E[(x(t)-Ex(t)][x(t-k)-Ex(t-k)]}/E{[x(t-k)-Ex(t-k)]^2}
    这就是滞后k偏自相关系数的定义。

1.什么是白噪声?
答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯,是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声。理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。热噪声和散粒噪声是高斯白噪声。所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。
       高斯白噪声的概念——"白"指功率谱恒定;高斯指幅度取各种值时的概率p (x)是高斯函数
       高斯噪声——n维分布都服从高斯分布的噪声
       高斯分布——也称正态分布,又称常态分布。对于随机变量X,记为N(μ,σ2),分别为高斯分布的期望和方差。当有确定值时,p (x)也就确定了,特别当μ=0,σ2=1时,X的分布为标准正态分布。

2.为什么残差要是白噪声?
答:得到白噪声序列,就说明时间序列中有用的信息已经被提取完毕了,剩下的全是随机扰动,是无法预测和使用的,残差序列如果通过了白噪声检验,则建模就可以终止了,因为没有信息可以继续提取。如果残差不是白噪声,就说明残差中还有有用的信息,需要修改模型或者进一步提取。

3.怎样对白噪声进行检验?
答:白噪声检验的步骤为:打开resid序列,view,correlogram,差分阶数选择level,确定,看q统计量的伴随p值是不是很大就行了。

4.如何对Q统计量做理解?
答:论坛里有些坛友写的资料,拿过来一起分享一下:http://bbs.pinggu.org/thread-2120615-1-1.html

ACF/PACF,残差白噪声的检验问题的更多相关文章

  1. 第二章平稳时间序列模型——ACF和PACF和样本ACF/PACF

    自相关函数/自相关曲线ACF   AR(1)模型的ACF: 模型为: 当其满足平稳的必要条件|a1|<1时(所以说,自相关系数是在平稳条件下求得的):          y(t)和y(t-s)的 ...

  2. R语言绘图:时间序列分析 ggplot2绘制ACF PACF

    R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = " ...

  3. R语言_格兰因果检验

    #当前文件路径 getwd() #设置当前路径,注意转译 setwd("C://Users//Administrator//Desktop//R_test") #导入数据 data ...

  4. R语言--时间序列分析步骤

    大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob)  d=1阶差分 s4_df1=d ...

  5. ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数

    https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...

  6. 《时间序列分析——基于R》王燕,读书笔记

    笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加 ...

  7. 自回归模型(AR )

    2017/7/2 19:24:15 自回归模型(Autoregressive Model,简称 AR 模型)是最常见的平稳时间序列模型之一.接下将介绍 AR 模型的定义.统计性质.建模过程.预测及应用 ...

  8. 【转】时间序列分析——基于R,王燕

    <时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法:     时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列     自相关图检验:(ac ...

  9. 利用ARIMA算法建立短期预测模型

    周五福利日活动是电信为回馈老用户而做的活动,其主要回馈老用户的方式是让用户免费领取对应的优惠券,意在提升老用户的忠诚度和活跃度.今日,为保证仓库备货优惠券资源充足,特别是5元话费券等,需要对该类优惠券 ...

随机推荐

  1. linux 其他知识目录

    博客目录总纲首页 为博客园添加目录的方法总结 linux 命令自动补全包 手动配置网卡 nginx日志统计 Linux 深入理解inode/block/superblock /proc/sys目录下各 ...

  2. js最简单的动画

    $(document).ready(function(){ //�ֶ�����ҳ��Ԫ�� $("#reset").click(function(){ $("*" ...

  3. Xcode中的Target

    Xcode中的Target,主要包含下面几点知识: Target依赖 Build Phase Build Rule Target依赖 Target的依赖关系表示一个Target要构建成功,必先依赖于其 ...

  4. LeetCode 404. Sum of Left Leaves (C++)

    题目: Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are t ...

  5. [buaa-SE-2017]个人作业-回顾

    个人作业-回顾 提问题的博客:[buaa-SE-2017]个人作业-Week1 Part1: 问题的解答和分析 1.1 问题:根据书中"除了前20的学校之外,计科和软工没有区别"所 ...

  6. sprint会议1

    昨天:进行第一次站立会议,讨论冲刺阶段,目标,任务认领,制作索引卡. 今天:准备查找安卓APP开发的有关资料,安装有关软件. 遇到的问题:对这方面毫无了解,不知道怎么开始,从哪开始,完全没经验.

  7. spring冲刺第一天

    第一天总结 昨天我们开始了spring冲刺会议,我们进行了明确的分工,每个人都有自己的任务.我的目前任务是游戏地图的初步设计. 今天早上我们开了站立会议,算是正式开始了spring冲刺.我上网查找了一 ...

  8. b4

    吴晓晖(组长) 过去两天完成了哪些任务 昨天FloatingActionButton和权限获取调整 今天复习,没写东西,晚点有空了写 展示GitHub当日代码/文档签入记录 接下来的计划 推荐算法 还 ...

  9. express框架结合ejs模板引擎使用

    我们在项目里建立一个views文件夹(必须),如果你不想使用views文件夹的话需要调用app.set("views","自定义文件夹名"),然后在里面建立一个 ...

  10. spring ioc和aop的理解

    IOC,依赖倒置的意思,所谓依赖,从程序的角度看,就是比如A要调用B的方法,那么A就依赖于B,反正A要用到B,则A依赖于B.所谓倒置,你必须理解如果不倒置,会怎么着,因为A必须要有B,才可以调用B,如 ...