题面

这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=。=

因为后面的项的计算依赖于前面的项,不能直接FFT。所以用CDQ的思想,算出前面然后考虑给后面的贡献

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int a[*N],b[*N],rev[*N],f[N],g[N],n,G,Gi;
void exGCD(int a,int b,int &x,int &y)
{
if(!b) {x=,y=; return ;}
exGCD(b,a%b,y,x),y-=a/b*x;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int Inv(int x,int m)
{
int xx,yy;
exGCD(x,m,xx,yy);
return (xx%m+m)%m;
}
void NTT(int *arr,int len,int typ)
{
for(int i=;i<=len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(int i=;i<=len;i<<=)
{
int lth=i>>,ort=Qpow(~typ?G:Gi,(mod-)/i);
for(int j=;j<len;j+=i)
{
int ori=,tmp;
for(int k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
for(int i=,ni=Inv(len,mod);i<len;i++)
arr[i]=1ll*arr[i]*ni%mod;
}
void CDQ(int l,int r,int mid)
{
int len=r-l+,m=;
for(int i=l;i<=mid;i++) a[i-l]=f[i];
for(int i=;i<len;i++) b[i]=g[i]; len+=mid-l+;
while(m<=len) m<<=;
for(int i=;i<=m;i++) rev[i]=(rev[i>>]>>)+(i&)*(m>>);
NTT(a,m,),NTT(b,m,);
for(int i=;i<=m;i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,m,-);
for(int i=mid+;i<=r;i++) f[i]+=a[i-l],f[i]%=mod;
for(int i=;i<=m;i++) a[i]=b[i]=;
}
void Divide(int l,int r)
{
if(l==r) return;
int mid=(l+r)/;
Divide(l,mid),CDQ(l,r,mid),Divide(mid+,r);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&g[i]);
f[]=,G=,Gi=Inv(G,mod),Divide(,n-);
for(int i=;i<n;i++) printf("%d ",f[i]);
return ;
}

解题:洛谷4721 [模板]分治FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  3. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. webpack2.0+ vue2.0

    一 webpack 2.0 及用到的插件安装(默认已经有node环境) 1. package.json文件 (插件安装及插件的功能不详解) { "private": true, & ...

  2. 笔记:《机器学习训练秘籍》——吴恩达deeplearningai微信公众号推送文章

    说明 该文为笔者在微信公众号:吴恩达deeplearningai 所推送<机器学习训练秘籍>系列文章的学习笔记,公众号二维码如下,1到15课课程链接点这里 该系列文章主要是吴恩达先生在机器 ...

  3. Streamr助你掌控自己的数据(3)——教你在Streamr市场上发布数据

    博客说明 所有刊发内容均可转载但是需要注明出处. 教你在Streamr市场上发布数据 本系列文档主要介绍怎么通过Streamr管理自己的DATA,整个系列包括三篇教程文档,分别是:教你5分钟上传数据至 ...

  4. 不用U盘,用一台好电脑给另一个电脑重装windows10

    先把坏电脑硬盘拆下来,然后挂到好电脑上 把这块盘用系统的磁盘管理工具改成GPT分区表格式,然后整盘分区(NTFS). 再对这个分区进行压缩卷操作,分出第二个区(FAT32格式 大小大于5G 我这里用了 ...

  5. “Hello World!”团队第七周召开的第六次会议

    博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八 .功能说明书 一.会议时间 2017年12月6日  11:20-12:00 二 ...

  6. 记事本APP之Alpha报告

    项目名称 记事本APP 项目版本 Alpha版本 负责人 北京航空航天大学计算机学院 Echo软件团队 联系方式 http://www.cnblogs.com/echo-buaa/ 要求发布日期 20 ...

  7. 2017-2018-1 Java演绎法 第九、十周 作业

    团队成员 [20162315 马军] [20162316 刘诚昊] [20162317 袁逸灏(组长)] [20162319 莫礼钟] [20162320 刘先润] [20162330 刘伟康] 项目 ...

  8. connect by prior id= pid start with id='1' 树结构查询

    基础表创建: with temp as ( ' id, '' pid from dual union all ' pid from dual union all ' pid from dual uni ...

  9. web10 动态action的应用

    电影网站:www.aikan66.com 项目网站:www.aikan66.com游戏网站:www.aikan66.com图片网站:www.aikan66.com书籍网站:www.aikan66.co ...

  10. poi读取、通过poi导出数据库的记录到excl表

    package com.nt.test;   import java.io.File; import java.io.FileInputStream; import java.io.FileNotFo ...