题面

这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=。=

因为后面的项的计算依赖于前面的项,不能直接FFT。所以用CDQ的思想,算出前面然后考虑给后面的贡献

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int a[*N],b[*N],rev[*N],f[N],g[N],n,G,Gi;
void exGCD(int a,int b,int &x,int &y)
{
if(!b) {x=,y=; return ;}
exGCD(b,a%b,y,x),y-=a/b*x;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int Inv(int x,int m)
{
int xx,yy;
exGCD(x,m,xx,yy);
return (xx%m+m)%m;
}
void NTT(int *arr,int len,int typ)
{
for(int i=;i<=len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(int i=;i<=len;i<<=)
{
int lth=i>>,ort=Qpow(~typ?G:Gi,(mod-)/i);
for(int j=;j<len;j+=i)
{
int ori=,tmp;
for(int k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
for(int i=,ni=Inv(len,mod);i<len;i++)
arr[i]=1ll*arr[i]*ni%mod;
}
void CDQ(int l,int r,int mid)
{
int len=r-l+,m=;
for(int i=l;i<=mid;i++) a[i-l]=f[i];
for(int i=;i<len;i++) b[i]=g[i]; len+=mid-l+;
while(m<=len) m<<=;
for(int i=;i<=m;i++) rev[i]=(rev[i>>]>>)+(i&)*(m>>);
NTT(a,m,),NTT(b,m,);
for(int i=;i<=m;i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,m,-);
for(int i=mid+;i<=r;i++) f[i]+=a[i-l],f[i]%=mod;
for(int i=;i<=m;i++) a[i]=b[i]=;
}
void Divide(int l,int r)
{
if(l==r) return;
int mid=(l+r)/;
Divide(l,mid),CDQ(l,r,mid),Divide(mid+,r);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&g[i]);
f[]=,G=,Gi=Inv(G,mod),Divide(,n-);
for(int i=;i<n;i++) printf("%d ",f[i]);
return ;
}

解题:洛谷4721 [模板]分治FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  3. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. IIS6/IIS7环境下实现支持mp4视频随意拖动、预览播放、边下载边播放

    前几天,一客户需要在IIS环境下实现MP4视频可以随意拖动观看,边下载边播放.一看这要求,IIS本身是无法实现,想着应该需要用插件,于是GG一番,还真找到这样的插件,此组件为H264-Streamin ...

  2. Digitalocean + ss 搭建加密通信代理服务器

    本文以 DigitalOcean + ss/ssr 配置加密通道***为例,记录了手动搭梯子的过程. 启动一个服务器实例的操作可以参考我的这篇博文,这里主要介绍 ss/ssr 的服务搭建过程. 首先 ...

  3. 初学node.js-nodejs中实现HTTP服务(3)

    一.node.js实现服务端 创建hello-world-server.js文件,服务端源码如下: /** * node.js实现http服务端 */ var http = require('http ...

  4. Ajax请求返回Error:200无数据的解决方法

    先看代码 $.ajax({ type:"GET", url:"https://****/charts/data/genre2.json", dataType:& ...

  5. Django_用户权限管理rbac

    组成部分 1.初始化权限:login视图initial_permission,把权限信息放入session.initial_permission函数生成权限列表.菜单列表 2.中间件验证权限:在第一次 ...

  6. kafka启动报错:另一个程序正在使用此文件,进程无法访问。

    在Windows上启动kafka_2.12-1.1.0报以下错误:[2018-05-08 10:24:51,777] ERROR Failed to clean up log for __consum ...

  7. C++:构造函数2——拷贝构造函数

     前言:拷贝构造函数是C++中的重点之一,在这里对其知识进行一个简单的总结. 一.什么是拷贝构造函数 在C++中,对于内置类型的变量来说,在其创建的过程中用同类型的另一个变量来初始化它是完全可以的,如 ...

  8. angularJS1笔记-(6)-自定义过滤器

    html: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  9. C++获取private的变量-偷走private

    private提供了对数据的封装,使得private成员只能被类自身的成员函数以及类的友元访问,其他的函数或者类想要访问private成员只能通过该类所提供的set和get的方法进行访问, 或者返回其 ...

  10. Internet History, Technology and Security (Week 8)

    Week 8 Security: Encrypting and Signing This week we start two weeks of Internet Security. It is a l ...