题目链接


对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树。初始时就是\(n\)棵。

对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并。

对于升序与降序,只需要维护一个标记,若为降序,则给左区间大的那部分。

具体实现还要用set存下每棵线段树维护的区间左端点,便于快速查找包含\([l,r]\)的区间;对每个区间维护其右端点便于快速得到区间大小。

时间、空间复杂度都是\(O((n+m)\log n)\)。

但是在洛谷上要么RE要么MLE。。其它OJ上还是能过的。


Another Solution:

对于询问二分一个值,将所有数根据与这个值的大小关系设为0/1。模拟每次操作,就是将一段区间的0/1分别放在两边。用线段树维护区间和、区间覆盖即可。最后判断是否仅p之前全是0,


线段树合并做法:

//57628kb	1692ms
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 150000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1e5+5; int n,m,R[N],root[N],tmp[N];
bool type[N];//0:↑
std::set<int> st;
char IN[MAXIN],*SS=IN,*TT=IN; struct Segment_Tree
{
#define S N*34//!
#define lson son[x][0]
#define rson son[x][1]
int tot,top,sk[S],sz[S],son[S][2]; #define Del_Node(x) sk[++top]=x
inline int New_Node()
{
int x=top?sk[top--]:++tot;
lson=rson=0, sz[x]=1;
return x;
}
void Insert(int &x,int l,int r,int p)
{
x=New_Node();
if(l==r) return;
int m=l+r>>1;
if(p<=m) Insert(lson,l,m,p);
else Insert(rson,m+1,r,p);
}
void Split(int &y,int x,int k)//将线段树分为x,y两棵,使得sz[x]==k。
{
y=New_Node();
int ls=sz[lson];
if(ls<k) Split(son[y][1],rson,k-ls);
else son[y][1]=rson, rson=0;
if(ls>k) Split(son[y][0],lson,k);
sz[y]=sz[x]-k, sz[x]=k;
}
int Merge(int x,int y)
{
if(!x||!y) return x^y;
lson=Merge(lson,son[y][0]), rson=Merge(rson,son[y][1]);
sz[x]+=sz[y], Del_Node(y); return x;
}
int Query(int x,int l,int r,int k)
{
if(l==r) return l;
int ls=sz[lson], m=l+r>>1;
if(ls>=k) return Query(lson,l,m,k);
return Query(rson,m+1,r,k-ls);
}
// void Print(int x,int l,int r)
// {
// if(!x) return;
// printf("%d:%d~%d sz:%d\n",x,l,r,sz[x]);
// if(l==r) ;
// else Print(lson,l,l+r>>1), Print(rson,(l+r>>1)+1,r);
// }
// void Output(int x){
// printf("%d root:%d type:%d:\n",x,root[x],type[x]), Print(root[x],1,n), putchar('\n');
// }
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Split(int x,int y)//将x~y划分为一段
{
if(y<x||y>=R[x]) return;
if(!type[x]) T.Split(root[y+1],root[x],y-x+1);
else root[y+1]=root[x], T.Split(root[x],root[y+1],R[x]-y);//保留右边那部分R[x]-x+1-y+x-1
R[y+1]=R[x], R[x]=y, type[y+1]=type[x], st.insert(y+1);
}
void Merge(int x,int y)
{
if(x==y) return;//
root[x]=T.Merge(root[x],root[y]);
R[x]=R[y], st.erase(y);
}
int Query(int k)
{
std::set<int>::iterator p=st.upper_bound(k);
int x=*(--p); k-=x-1;
return type[x]?T.Query(root[x],1,n,R[x]-x+2-k):T.Query(root[x],1,n,k);
} int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
T.Insert(root[i],1,n,read()), st.insert(i), R[i]=i;
std::set<int>::iterator p1,p2;
for(int opt,l,r; m--; )
{
opt=read(), l=read(), r=read();
p1=st.upper_bound(l), Split(*(--p1),l-1);
p1=st.upper_bound(r), Split(*(--p1),r); p1=st.lower_bound(l), p2=st.upper_bound(r);
int now=*p1, t=0;
for(++p1; p1!=p2; ++p1) tmp[++t]=*p1;//Merge要修改set,所以还是先存下来吧。
for(int i=1; i<=t; ++i) Merge(now,tmp[i]);
type[l]=opt; //type[now]=opt;
}
printf("%d\n",Query(read())); return 0;
}

BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)的更多相关文章

  1. [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)

    后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...

  2. [HEOI2016/TJOI2016] 排序 解题报告(二分答案/线段树分裂合并+set)

    题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在 ...

  3. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  4. [HEOI2016/TJOI2016]排序 线段树+二分

    [HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...

  5. 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)

    2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...

  6. 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)

    线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...

  7. BZOJ 4556 [HEOI2016/TJOI2016]字符串

    BZOJ 4556 [HEOI2016/TJOI2016]字符串 其实题解更多是用后缀数组+数据结构的做法,貌似也不好写. 反正才学了 sam 貌似比较简单的做法. 还是得先二分,然后倍增跳到 $ s ...

  8. 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告

    P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...

  9. 【线段树合并】【P2824】 [HEOI2016/TJOI2016]排序

    Description 给定一个长度为 \(n\) 的排列,有 \(m\) 次操作,每次选取一段局部进行升序或降序排序,问你一波操作后某个位置上的数字是几 Hint \(1~\leq~n,~m~\le ...

随机推荐

  1. python作业堡垒机(第十三周)

    作业需求: 1. 所有的用户操作日志要保留在数据库中 2. 每个用户登录堡垒机后,只需要选择具体要访问的设置,就连接上了,不需要再输入目标机器的访问密码 3. 允许用户对不同的目标设备有不同的访问权限 ...

  2. js如何查看元素类型

    <script type="text/javascript"> //定义变量temp var temp = Object.prototype.toString.appl ...

  3. Django-ORM简介

    ORM简介 MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库 ORM是“对象-关系-映射”的简称 ...

  4. 十五、springboot集成定时任务(Scheduling Tasks)(二)之(线程配置)

    配置类: /** * 定时任务线程配置 * */ @Configuration public class SchedulerConfig implements SchedulingConfigurer ...

  5. 在VS中让一个JS文件智能提示另一个JS文件中的成员2--具体引用

    我们知道,在html中,利用<script language="javascript" type="text/javascript" src=" ...

  6. 洛谷P2680运输计划

    传送门啦 要求的就是,把树上的一条边的权值设为0之后,所有路径中的最大值的最小值. 首先二分最大值,假设某次二分的最大值为x,我们首先找出所有大于x的路径(也就是我们需要通过改权缩短的路径),并把路径 ...

  7. LeetCode446. Arithmetic Slices II - Subsequence

    A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...

  8. SqlServer性能优化 Sql语句优化(十四)

    一:在较小的结果集上上操作 1.仅返回需要的列 2.分页获取数据 EF实现分页: public object getcp(int skiprows,int currentpagerows) { HRU ...

  9. IdentityServer4揭秘---Consent(同意页面)

    授权同意页面与登录一样首先要分析页面的需要什么模型元素后建立相关的模型类 界面的话就 记住选择  .按钮.RuturnUrl.以及选择的资源Scope /// <summary> /// ...

  10. 《精通Python设计模式》学习之工厂方法

    小书,在我以前作数据库的连接时,就用了这个工厂方法的. 归纳总结一下,更有利于成长吧. import xml.etree.ElementTree as etree import json class ...