BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)
对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树。初始时就是\(n\)棵。
对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并。
对于升序与降序,只需要维护一个标记,若为降序,则给左区间大的那部分。
具体实现还要用set存下每棵线段树维护的区间左端点,便于快速查找包含\([l,r]\)的区间;对每个区间维护其右端点便于快速得到区间大小。
时间、空间复杂度都是\(O((n+m)\log n)\)。
但是在洛谷上要么RE要么MLE。。其它OJ上还是能过的。
Another Solution:
对于询问二分一个值,将所有数根据与这个值的大小关系设为0/1。模拟每次操作,就是将一段区间的0/1分别放在两边。用线段树维护区间和、区间覆盖即可。最后判断是否仅p之前全是0,
线段树合并做法:
//57628kb 1692ms
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 150000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1e5+5;
int n,m,R[N],root[N],tmp[N];
bool type[N];//0:↑
std::set<int> st;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Segment_Tree
{
#define S N*34//!
#define lson son[x][0]
#define rson son[x][1]
int tot,top,sk[S],sz[S],son[S][2];
#define Del_Node(x) sk[++top]=x
inline int New_Node()
{
int x=top?sk[top--]:++tot;
lson=rson=0, sz[x]=1;
return x;
}
void Insert(int &x,int l,int r,int p)
{
x=New_Node();
if(l==r) return;
int m=l+r>>1;
if(p<=m) Insert(lson,l,m,p);
else Insert(rson,m+1,r,p);
}
void Split(int &y,int x,int k)//将线段树分为x,y两棵,使得sz[x]==k。
{
y=New_Node();
int ls=sz[lson];
if(ls<k) Split(son[y][1],rson,k-ls);
else son[y][1]=rson, rson=0;
if(ls>k) Split(son[y][0],lson,k);
sz[y]=sz[x]-k, sz[x]=k;
}
int Merge(int x,int y)
{
if(!x||!y) return x^y;
lson=Merge(lson,son[y][0]), rson=Merge(rson,son[y][1]);
sz[x]+=sz[y], Del_Node(y); return x;
}
int Query(int x,int l,int r,int k)
{
if(l==r) return l;
int ls=sz[lson], m=l+r>>1;
if(ls>=k) return Query(lson,l,m,k);
return Query(rson,m+1,r,k-ls);
}
// void Print(int x,int l,int r)
// {
// if(!x) return;
// printf("%d:%d~%d sz:%d\n",x,l,r,sz[x]);
// if(l==r) ;
// else Print(lson,l,l+r>>1), Print(rson,(l+r>>1)+1,r);
// }
// void Output(int x){
// printf("%d root:%d type:%d:\n",x,root[x],type[x]), Print(root[x],1,n), putchar('\n');
// }
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Split(int x,int y)//将x~y划分为一段
{
if(y<x||y>=R[x]) return;
if(!type[x]) T.Split(root[y+1],root[x],y-x+1);
else root[y+1]=root[x], T.Split(root[x],root[y+1],R[x]-y);//保留右边那部分R[x]-x+1-y+x-1
R[y+1]=R[x], R[x]=y, type[y+1]=type[x], st.insert(y+1);
}
void Merge(int x,int y)
{
if(x==y) return;//
root[x]=T.Merge(root[x],root[y]);
R[x]=R[y], st.erase(y);
}
int Query(int k)
{
std::set<int>::iterator p=st.upper_bound(k);
int x=*(--p); k-=x-1;
return type[x]?T.Query(root[x],1,n,R[x]-x+2-k):T.Query(root[x],1,n,k);
}
int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
T.Insert(root[i],1,n,read()), st.insert(i), R[i]=i;
std::set<int>::iterator p1,p2;
for(int opt,l,r; m--; )
{
opt=read(), l=read(), r=read();
p1=st.upper_bound(l), Split(*(--p1),l-1);
p1=st.upper_bound(r), Split(*(--p1),r);
p1=st.lower_bound(l), p2=st.upper_bound(r);
int now=*p1, t=0;
for(++p1; p1!=p2; ++p1) tmp[++t]=*p1;//Merge要修改set,所以还是先存下来吧。
for(int i=1; i<=t; ++i) Merge(now,tmp[i]);
type[l]=opt; //type[now]=opt;
}
printf("%d\n",Query(read()));
return 0;
}
BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)的更多相关文章
- [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)
后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...
- [HEOI2016/TJOI2016] 排序 解题报告(二分答案/线段树分裂合并+set)
题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在 ...
- [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)
题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...
- [HEOI2016/TJOI2016]排序 线段树+二分
[HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...
- 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)
2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- BZOJ 4556 [HEOI2016/TJOI2016]字符串
BZOJ 4556 [HEOI2016/TJOI2016]字符串 其实题解更多是用后缀数组+数据结构的做法,貌似也不好写. 反正才学了 sam 貌似比较简单的做法. 还是得先二分,然后倍增跳到 $ s ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- 【线段树合并】【P2824】 [HEOI2016/TJOI2016]排序
Description 给定一个长度为 \(n\) 的排列,有 \(m\) 次操作,每次选取一段局部进行升序或降序排序,问你一波操作后某个位置上的数字是几 Hint \(1~\leq~n,~m~\le ...
随机推荐
- 一步一步搭建 oracle 11gR2 rac+dg之grid安装(四)【转】
一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之grid安装 (四) 转自 一步一步搭建 oracle 11gR2 rac+d ...
- avalonJS-源码阅读(一)
写angularJS源码阅读系列的时候,写的太垃圾了.一个月后看,真心不忍直视,以后有机会的话得重写.这次写avalonJS,希望能在代码架构层面多些一点,少上源码.多写思路. avalon暴露句柄方 ...
- 读书笔记 effective C++ Item 33 避免隐藏继承而来的名字
1. 普通作用域中的隐藏 名字实际上和继承没有关系.有关系的是作用域.我们都知道像下面的代码: int x; // global variable void someFunc() { double x ...
- Ubuntu_安装Wiz笔记
前言 安装完成了Linux,有了搜狗输入法,我们还需要笔记软件,本文主要介绍如何安装为知笔记 安装步骤 找到wiz官网:http://www.wiz.cn/ 获取Linux安装教程 安装QT 下载的Q ...
- TCP协议端口状态说明:CLOSE-WAIT、TIME-WAIT 、LISTENING、SYN_SENT、ESTABLISHED、LAST-ACK ...
了解TCP协议端口的连接状态,对排除和定位网络或系统故障会有很大帮助,因此了解一下是有必要的: 一.LISTENING 提供某种服务,侦听远方TCP端口的连接请求,当提供的服务没有被连接时,处于LI ...
- 【小程序开发总结】微信小程序开发常用技术方法总结
1.获取input的值 <input bindinput="bindKeyInput" placeholder="输入同步到view中"/> b ...
- 【Android开发日记】之入门篇(五)——Android四大组件之Service
这几天忙着驾校考试,连电脑都碰不到了,今天总算告一段落了~~Service作为Android的服务组件,默默地在后台为整个程序服务,辅助应用与系统中的其他组件或系统服务进行沟通.它跟Activity的 ...
- No.7 selenium学习之路之Alert弹窗
Alert弹窗 弹窗是用工具选不到的~ 切换到alert driver.switch_to_alert() 新的语法:driver.switch_to.alert 注:新的语法不需要后面加括号 打印a ...
- CF401D 【Roman and Numbers】
题意将n(n<=10^18)的各位数字重新排列(不允许有前导零) 求 可以构造几个mod m等于0的数字解法状压f[S][k] 表示选用的位数集合为S,mod m 为k的方案数注意不能有前导 ...
- Unix IPC之读写锁
linux中读写锁的rwlock介绍 读写锁比mutex有更高的适用性,可以多个线程同时占用读模式的读写锁,但是只能一个线程占用写模式的读写锁: 1,当读写锁是写加锁状态时, 在这个锁被解锁之前, 所 ...