https://www.cnblogs.com/zhoushuyu/p/9138251.html

注意如果一开始F(i)中内层式子中j枚举的是除前i种颜色之外还有几种出现S次的颜色,那么后面式子就会难推很多。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,mod=;
int n,m,s,ans,w[N],fac[M],inv[M],rev[N],a[N],b[N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void NTT(int a[],int n,bool f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(,f ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} int main(){
freopen("color.in","r",stdin);
freopen("color.out","w",stdout);
scanf("%d%d%d",&n,&m,&s); int N=min(m,n/s),ed=max(n,m);
rep(i,,m) scanf("%d",&w[i]);
fac[]=; rep(i,,ed) fac[i]=1ll*fac[i-]*i%mod;
inv[ed]=ksm(fac[ed],mod-);
for (int i=ed-; ~i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
rep(i,,N) a[i]=1ll*w[i]*inv[i]%mod;
rep(i,,N) b[i]=(i&)?mod-inv[i]:inv[i];
int nn=,L=; for (; nn<=*N; nn<<=,L++);
for (int i=; i<nn; i++) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
NTT(a,nn,); NTT(b,nn,);
for (int i=; i<nn; i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,nn,);
rep(i,,N) ans=(ans+1ll*ksm(m-i,n-i*s)*inv[m-i]%mod*ksm(inv[s],i)%mod*inv[n-i*s]%mod*a[i]%mod)%mod;
printf("%lld\n",1ll*ans*fac[n]%mod*fac[m]%mod);
return ;
}

[BZOJ5306][HAOI2018]染色(容斥+FFT)的更多相关文章

  1. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  2. LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆

    传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...

  3. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  4. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  5. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  6. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  7. BZOJ5306 HAOI2018染色(容斥原理+NTT)

    容易想到枚举恰好出现S次的颜色有几种.如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i). 于是考虑容斥,可得恰好 ...

  8. [BZOJ5306][HAOI2018]染色

    bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...

  9. Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题

    Problem F. ColorDescriptionRecently, Mr. Big recieved n flowers from his fans. He wants to recolor th ...

随机推荐

  1. 【译】第九篇 SQL Server代理了解作业和安全

    本篇文章是SQL Server代理系列的第九篇,详细内容请参考原文 在这一系列的上一篇,学习了如何在SQL Server代理作业步骤启动外部程序.你可以使用过时的ActiveX系统,运行批处理命令脚本 ...

  2. git 放弃本地修改操作

      如果在修改时发现修改错误,而要放弃本地修改时, 一, 未使用 git add 缓存代码时. 可以使用 git checkout -- filepathname (比如: git checkout ...

  3. 程序移植到AUTOCAD2013笔记

    1:需要引用acmgd.dll acdbmgd.dll,AcCoreMdg.dll, accui.dll 四个dll 2: 2010下的的acmgd.dll被拆分为acmgd.dll和AcCoreMd ...

  4. Linux操作系统介绍

    1Linux操作系统介绍 1.1linux系统的应用 服务器系统:Web应用服务器.数据库服务器.接口服务器.DNS.FTP等等: 嵌入式系统:路由器.防火墙.手机.PDA.IP 分享器.交换器.家电 ...

  5. Strusts2笔记9--防止表单重复提交和注解开发

    防止表单重复提交: 用户可能由于各种原因,对表单进行重复提交.Struts2中使用令牌机制防止表单自动提交.以下引用自北京动力节点:

  6. oracle字符集查看、修改、版本查看

    .1.先查服务端的字符集   或者 2.再查客户端的字符集 两个字符集(不是语言)一致的话就不会乱码了   详细资料 一.什么是Oracle字符集 Oracle字符集是一个字节数据的解释的符号集合,有 ...

  7. MODULE_DEVICE_TABLE (二)【转】

    转自:http://blog.csdn.net/uruita/article/details/7263290 1. MODULE_DEVICE_TABLE (usb, skel_table);该宏生成 ...

  8. linux快速复制大量小文件方法 nc+tar【转】

    1,在需要对大量小文件进行移动或复制时,用cp.mv都会显得很没有效率,可以用tar先压缩再解压缩的方式.  2,在网络环境中传输时,可以再结合nc命令,通过管道和tcp端口进行传输.  nc和tar ...

  9. Nginx/LVS/HAProxy负载均衡软件的优缺点详解【转】

    转自 (总结)Nginx/LVS/HAProxy负载均衡软件的优缺点详解http://www.ha97.com/5646.html PS:Nginx/LVS/HAProxy是目前使用最广泛的三种负载均 ...

  10. ajax局部刷新后里面的jquery事件失效的解决方法

    live() 与bind()作用基本一样. 最重要区别:live()可以将事件绑定到当前和将来的元素(eg:为id=zy元素绑定点击事件,而当你用js动态生成一个节点并插入到dom文档结构中时,如果你 ...