[JOISC2014]歴史の研究/[BZOJ4241]历史研究
[JOISC2014]歴史の研究/[BZOJ4241]历史研究
题目大意:
一个长度为\(n(n\le10^5)\)的数列\(A(A_i\le10^9)\),定义一个元素对一个区间\([l,r]\)的贡献为\(A_i\times cnt(A_i)\),其中\(cnt(A_i)\)表示\(A_i\)在区间内的出现次数。\(q(q\le10^5)\)次询问,每次询问一个区间内贡献最大的元素的贡献。
思路:
分块。
\(cnt[i][j]\)表示前\(i\)块内\(j\)的出现次数,\(sum[i][j]\)表示\([begin(i),end(j)]\)的答案。
对\(A\)离散化后预处理\(cnt\)和\(sum\),询问时如果\(l,r\)在同一块直接暴力。如果不在同一块,则答案要么是\(sum[bel(l)+1,bel(r)-1]\),要么是\(l,r\)所在块中出现过的元素的贡献。
时间复杂度\(\mathcal O(n^{\frac32})\)。
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5,M=317;
int n,m,q,block,a[N],b[N],bel[N],begin[M],end[M],tmp[N],cnt[M][N];
int64 sum[M][M];
inline int64 query(const int &l,const int &r) {
int64 ret=0;
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*tmp[a[i]]);
}
for(register int i=l;i<=r;i++) tmp[a[i]]--;
return ret;
}
ret=sum[bel[l]+1][bel[r]-1];
for(register int i=l;i<=end[bel[l]];i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*(tmp[a[i]]+cnt[bel[r]-1][a[i]]-cnt[bel[l]][a[i]]));
}
for(register int i=begin[bel[r]];i<=r;i++) {
tmp[a[i]]++;
ret=std::max(ret,(int64)b[a[i]]*(tmp[a[i]]+cnt[bel[r]-1][a[i]]-cnt[bel[l]][a[i]]));
}
for(register int i=l;i<=end[bel[l]];i++) tmp[a[i]]--;
for(register int i=begin[bel[r]];i<=r;i++) tmp[a[i]]--;
return ret;
}
int main() {
n=getint(),q=getint(),block=sqrt(n);
for(register int i=0;i<n;i++) {
a[i]=b[i]=getint();
bel[i]=i/block;
end[bel[i]]=i;
}
for(register int i=n-1;i>=0;i--) {
begin[bel[i]]=i;
}
std::sort(&b[0],&b[n]);
m=std::unique(&b[0],&b[n])-b;
for(register int i=0;i<n;i++) {
a[i]=std::lower_bound(&b[0],&b[m],a[i])-b;
cnt[bel[i]][a[i]]++;
}
for(register int i=1;i<=bel[n-1];i++) {
for(register int j=0;j<m;j++) {
cnt[i][j]+=cnt[i-1][j];
}
}
for(register int i=0;i<=bel[n-1];i++) {
for(register int j=begin[i];j<=end[i];j++) {
tmp[a[j]]++;
sum[i][i]=std::max(sum[i][i],(int64)b[a[j]]*tmp[a[j]]);
}
for(register int j=begin[i];j<=end[i];j++) tmp[a[j]]--;
for(register int j=i+1;j<=bel[n-1];j++) {
sum[i][j]=sum[i][j-1];
for(register int k=begin[j];k<=end[j];k++) {
tmp[a[k]]++;
sum[i][j]=std::max(sum[i][j],(int64)b[a[k]]*(tmp[a[k]]+cnt[j-1][a[k]]-(i!=0?cnt[i-1][a[k]]:0)));
}
for(register int k=begin[j];k<=end[j];k++) tmp[a[k]]--;
}
}
for(register int i=0;i<q;i++) {
const int l=getint()-1,r=getint()-1;
printf("%lld\n",query(l,r));
}
return 0;
}
[JOISC2014]歴史の研究/[BZOJ4241]历史研究的更多相关文章
- 【题解】BZOJ4241: 历史研究(魔改莫队)
[题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...
- BZOJ4241 历史研究
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- BZOJ4241历史研究——回滚莫队
题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...
- BZOJ4241 历史研究 莫队 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JO ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- [bzoj4241][历史研究] (分块)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- BZOJ4241 历史研究(莫队)
如果分块的话与区间众数没有本质区别.这里考虑莫队. 显然莫队时的删除可以用堆维护,但多了一个log不太跑得过. 有一种叫回滚莫队的trick,可以将问题变为只有加入操作.按莫队时分的块依次处理,一块中 ...
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
- bzoj4241: 历史研究(回滚莫队)
传送门 这是一个叫做回滚莫队的神奇玩意儿 是询问,而且不强制在线,就决定是你了莫队 如果是每次插入一个数是不是很简单? 然而悲剧的是我们莫队的时候不仅要插入数字还要删除数字 那么把它变成只插入不就行了 ...
随机推荐
- 【比赛游记】NOIWC2019冬眠记
上接THUWC2019酱油记. 贴一点文艺汇演的精彩表演: https://www.bilibili.com/video/av42089198/ https://www.bilibili.com/vi ...
- 一步一步搭建 oracle 11gR2 rac + dg 之前传 (一)【转】
一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之前传 (一) 转自 一步一步搭建 oracle 11gR2 rac + dg ...
- 【Educational Codeforces Round28】
咸鱼选手发现自己很久不做cf了,晚节不保. A.Curriculum Vitae 枚举一下间断点的位置. #include<bits/stdc++.h> using namespace s ...
- spotlight on mysql--安装以及简介
Spotlight on MySQL 安装与配置 第一步: 下载并安装mysql-connector-3.5x Spotlight on MySQL 连接mysql必须使用mysql-connecto ...
- MyBatis3.4.0以上的分页插件错误:Could not find method on interface org.apache.ibatis.executor.statement.StatementHandler named prepare. Cause: java.lang.NoSuchMethodException: org.apache.ibatis.executor.stateme
错误: Could not find method on interface org.apache.ibatis.executor.statement.StatementHandler named p ...
- (三)使用XML配置SQL映射器
SqlSessionFactoryUtil.java package com.javaxk.util; import java.io.IOException; import java.io.Input ...
- Jenkins在Linux环境安装
Jenkins介绍 Jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作,功能包括: 1.持续的软件版本发布/测试项目. 2.监控外部调用执行的工作. 安装环境 操作系统:lin ...
- hdu 5475 模拟计算器乘除 (2015上海网赛H题 线段树)
给出有多少次操作 和MOD 初始值为1 操作1 y 表示乘上y操作2 y 表示除以第 y次操作乘的那个数 线段树的叶子结点i 表示 第i次操作乘的数 将1替换成y遇到操作2 就把第i个结点的值 替换成 ...
- 【LOJ】#2056. 「TJOI / HEOI2016」序列
题解 这个我们处理出来每一位能变化到的最大值和最小值,包括自身 然后我们发现 \(f[i] = max(f[i],f[j] + 1) (mx[j] <= a[i] && a[j] ...
- USACO 4.2 Job Processing
Job ProcessingIOI'96 A factory is running a production line that requires two operations to be perfo ...