-----世界上本来没那么多坑,python更新到3以后坑就多了

无论哪一门语言开发,都离不了数据储存与解析,除了跨平台性极好的xml和json之外,python要提到的还有自身最常用pickle模块。在使用上,python的常用模块接口漂亮而简单,而且json跟pickle二者使用一模一样。首先来看一下用法,代码如下:

import json,pickle #导入模块。
data = {
'name' : "lixin",
'sex' :"female",
'height':1.58,
'weight':82,
'utterance':'奏是这么瘦,来打我啊'
}
jsondata = json.dumps(data) #转json数据
pythondata1 = json.loads(jsondata) #json数据转python
print(pythondata1)
pickledate = pickle.dumps(data)#转持久化数据
pythondata2 = pickle.loads(pickledate)#转回python
print(pythondata2)

  

以上代码,在python3.5里运行无误,utf-8编码汉字可识别。然而,大多数时候,数据的解析不仅仅是使用,更多的是为了储存。无关联型大多储存形式是以文本储存,因此我们需要把数据写入文本。python的常规文本写入是只支持字符串的,json和pickle在写入文本都有自己的方法接口,和普通数据转换接口也极好区分,去掉末尾的s即可。代码如下:

with open("jsondata.json","w") as file: #打开一个名为jsondata.json文本,只能写入状态 如果没有就创建
json.dump(data,file) #data转换为json数据格式并写入文件
file.close()#关闭文件
with open("jsondata.json","r") as file:#打开文本读取状态
l = json.load(file) #解析读到的文本内容 转为python数据 以一个变量接收
print(l) #打印变量
file.close() #关闭文件

  pickle的使用方式基本一样只是写入的文本格式为txt或者pk。当然json也可以直接写入txt。以上代码在python3.5运行无误(不排除人品不好)。看起来简洁方便,似乎毫无难点,那么来愉快的谈一下使用中常见的坑

不管你要读什么,反正我一点数据也没有:

Traceback (most recent call last):
File "/Users/penglong/Documents/python/s10/day3/test.py", line 13, in <module>
l = json.load(file)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/json/__init__.py", line 268, in load
parse_constant=parse_constant, object_pairs_hook=object_pairs_hook, **kw)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/json/__init__.py", line 319, in loads
return _default_decoder.decode(s)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/json/decoder.py", line 339, in decode
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/json/decoder.py", line 357, in raw_decode
raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

  报错如上,原因十分明显,json没有内容可解析,一般直接从文件中进行排除,会发现读取的文本是空白,也就是说在写入数据的时候就已经发生了错误。但代码并没有报错,如果没有进行写入检测的话,差不多就卡这了,这个原因很简单,大部分是因为在写入时候调用的接口是dumps而不是dump,程序本身可以编译通过,但实际上没有文本写入。导致读取的时候直接报错。如果遇到这个问题,去排查一下写入数据时调用的接口。

不管你要我写什么,反正我就是写不进去:

  File "/Users/penglong/Documents/python/s10/day3/test.py", line 17, in <module>
pickle.dump(data,file)
TypeError: write() argument must be str, not bytes

  报错如上,此错误针对pickle写入,原因也很明显,写入必须是字符串,我猜json不报错的原因很大程度是因为它长的比较像字符串。。忽略这个不靠谱的想法。这个引发的错误留给下一个。解决代码如下:(ps:在2.7里面敲是没遇到这个毛病的,在3.5里面一定要在"wb"状态下才能正常写入。)

with open("pickle.pk","wb") as file: #改参数"w"为"wb" 代表二进制写入
pickle.dump(data,file)
file.close()

以上,json的错误完全相反,可能报错为TypeError: a bytes-like object is required, not 'str',完全不用举例了,是踩进了pickle的坑里,直接把"wb"状态改回"w"即可解决。然而总有那么些时候并不在意强扭的瓜甜不甜,仅仅是想强行把它给扭下来。假如犯了强迫症,一定要在wb的状态下使用,那么,解决代码如下:(ps:严重不推荐使用。。其实就是我半天不知道毛病在哪,头痛医头脚痛医脚,不管原因,强行把它给写进去了,虽然运行和结果都没错,但肯定有什么地方不对)

with open("jsondata.json","wb") as file:
file.write((json.dumps(data).encode("utf-8")))#强制以utf-8转一下byte数据再以普通形式写入 。
file.close()

不管你要做什么,反正我就是没有函数存在:

Traceback (most recent call last):
File "/Users/penglong/Documents/python/s10/day3/test.py", line 10, in <module>
json.dumps(data,file)
AttributeError: module 'json' has no attribute 'dumps'

  报错如上,json没有dumps模块存在。排查本地文件,大部分原因是本地文件有了json.py。python的包导入直接先导入了同级目录下的文件。如果本地文件并没有重复,那么就只能排查安装文件了,python命令行编辑模式下help(json.py) 如果文件存在,可以看到其详细信息和存放位置。但安装文件丢失的情况,我并未遇到。踩到的坑是本地文件重复,反而在安装文件排查了好久。 

其实还遇到好几个,可等熟悉了想要故意掉坑里,却进不去了。大概,在没有走的够远之前路上都是坑。

关于python数据序列化的那些坑的更多相关文章

  1. python 数据序列化(json、pickle、shelve)

    本来要查一下json系列化自定义对象的一个问题,然后发现这篇博客(https://www.cnblogs.com/yyds/p/6563608.html)很全面,感谢作者,关于python序列化的知识 ...

  2. Python基础4 迭代器,生成器,装饰器,Json和pickle 数据序列化

    本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需 ...

  3. Python-Day4 Python基础进阶之生成器/迭代器/装饰器/Json & pickle 数据序列化

    一.生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面 ...

  4. Python之数据序列化(json、pickle、shelve)

    本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Py ...

  5. python基础6之迭代器&生成器、json&pickle数据序列化

    内容概要: 一.生成器 二.迭代器 三.json&pickle数据序列化 一.生成器generator 在学习生成器之前我们先了解下列表生成式,现在生产一个这样的列表[0,2,4,6,8,10 ...

  6. Python【第五课】迭代器,生成器,数据序列化

    本节内容 列表生成式,生成器,迭代器 Json & pickle 数据序列化 1.列表生成式,生成器,迭代器 1.1 列表生成式 列表生成式?不就是生成个列表的表达式,恩~~~ 差不多. 一般 ...

  7. 【转】Python之数据序列化(json、pickle、shelve)

    [转]Python之数据序列化(json.pickle.shelve) 本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型 ...

  8. Python学习笔记:json模块和pickle模块(数据序列化)

    Python中的json模块和pickle都是用于数据的序列化和反序列化,它们提供的方法也是一样的:dumps,dump,loads,load dumps(obj):将对象序列化为str. dump( ...

  9. python学习之 -- 数据序列化

    json / pickle 数据序列化 序列化定义:把变量从内存中变成可存储或传输的过程称为序列化.反序列化:把变量内容从序列化的对象重新读到内存里称为反序列胡. 序列化模块之--pickle使用注意 ...

随机推荐

  1. JS 中如何将<br/> 替换成 /n

    JS 中如何将<br/> 替换成 /n function a() { var data = "aaaa<br/>bbbb<br/>cccc"; ...

  2. SVD的几何意义,以及在去噪,推荐系统中的应用

    很多文章说到奇异值分解的时候总是大概罗列下它的功能,并没有对功能及物理意义进行过多的阐述,现在我来对奇异值进行整理一下. 一 奇异值分解 对任意的矩阵A∈Fmn,rank(A)=r(矩阵的秩),总可以 ...

  3. SOA 实现:服务设计原则

    http://www.ibm.com/developerworks/cn/webservices/ws-soa-design/ 引言 面向服务的体系结构(Service-Oriented Archit ...

  4. js事件(Event)知识整理

    事件(Event)知识整理,本文由网上资料整理而来,需要的朋友可以参考下   鼠标事件 鼠标移动到目标元素上的那一刻,首先触发mouseover 之后如果光标继续在元素上移动,则不断触发mousemo ...

  5. redis技巧--自动完成功能实现

    自动完成功能一般都伴随搜索框出现,就是用户在输入时帮助其自动补全. 比如对成语进行补全,现有如下成语:一心一意,一心二用,一帆风顺. 两种实现方式: 实现方式一: 为每个成语的每个前缀都使用一个集合类 ...

  6. JavaScript闭包浅谈

    ------------------- 作者:willingtolove: 本文链接:http://www.cnblogs.com/willingtolove/p/4745889.html 1. 变量 ...

  7. hao916,hao123,2345.com浏览器劫持-分析与清除

    装了Win10, 要激活, 于是论坛下载了一个KMS10激活, (我是很相信论坛的啊, 没想到...)结果浏览器总是被加小尾巴跳转到hao123 http://hao.qquu8.com/?v=108 ...

  8. Mac 操作技巧

    1.OS X下如何在同一个程序之中快速切换窗口 command+`(1左边的那个) 2.

  9. NDK 笔记(一)

    参考:https://developer.android.com/studio/projects/add-native-code.html#link-gradle 使用Android Studio 2 ...

  10. 修改Centos 6.5的yum源

    1.进入目录 cd /etc/yum.repos.d/ 2.保持副本 mv CentOS-Base.repo CentOS-Base.repo.backup 3.下载新的CentOS-Base.rep ...