POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

题意分析

卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果。卡卡很喜欢苹果。树上有N个节点,卡卡给他们编号1到N,根的编号永远是1.每个节点上最多结一个苹果。卡卡想要了解某一个子树上一共结了多少苹果。

现在的问题是不断会有新的苹果长出来,卡卡也随时可能摘掉一个苹果吃掉。你能帮助卡卡吗?

前缀技能

边表存储树

DFS时间戳

线段树

首先利用边表将树存储下来,然后DFS打上时间戳。打上时间戳之后,我们就知道书上节点对应维护线段树的哪一段区间了。换句话说,每当题目给出一个点,要求更新的时候,我们根据时间戳,确定其点在线段树上的位置。当题目给出一个区间,要求我们查询的时候,再根据时间戳,确定线段树区间左右端点。如此一来,就可以将树上信息,转换到线段树上来维护。

注意

  1. 值得注意的是,我的边表存的是两条边,所以边表的容量要开二倍。
  2. 其次就是,无论在更新的时候,还是在查询的时候,要根据时间戳,转化到线段树的对应点或者区间上。因为这个WA了。

代码总览

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define nmax 100010
using namespace std;
struct edge{
int to,next;
}edg[nmax<<1];
struct Tree{
int l,r,val;
int mid(){
return (l+r)>>1;
}
};
Tree tree[nmax<<2];
int head[nmax],in[nmax],out[nmax];
int tot = 0,n,m,time = 0;
void add(int u, int v){
edg[tot].to = v;
edg[tot].next = head[u];
head[u] = tot++;
}
void init(){
memset(head,-1,sizeof head);
memset(edg, 0, sizeof edg);
memset(tree,0,sizeof tree);
memset(in,0,sizeof in);
memset(out ,0, sizeof out);
tot= 0;
time = 0;
}
void dfs(int rt,int f){
time++;
in[rt] = time;
for(int i = head[rt]; i!= -1;i= edg[i].next){
int net = edg[i].to;
if(net != f) dfs(net,rt);
}
out[rt] = time;
}
void PushUp(int rt)
{
tree[rt].val = tree[rt<<1].val + tree[rt<<1|1].val;
}
void Build(int l, int r, int rt)
{
tree[rt].l = l; tree[rt].r = r;
if(l == r){
tree[rt].val = 1;
return;
}
Build(l,tree[rt].mid(),rt<<1);
Build(tree[rt].mid()+1,r,rt<<1|1);
PushUp(rt);
}
void UpdatePoint(int pos, int rt)
{
if(tree[rt].l == tree[rt].r){
tree[rt].val ^= 1;
return;
}
if(pos<= tree[rt].mid()) UpdatePoint(pos,rt<<1);
else UpdatePoint(pos,rt<<1|1);
PushUp(rt);
}
int Query(int l,int r,int rt)
{
if(l>tree[rt].r || r<tree[rt].l) return 0;
if(l <= tree[rt].l && tree[rt].r <= r) return tree[rt].val;
return Query(l,r,rt<<1) + Query(l,r,rt<<1|1);
}
int main()
{
while(scanf("%d",&n) != EOF){
init();
int u,v;
for(int i = 0;i<n-1;++i){
scanf("%d %d",&u,&v);
add(u,v);
add(v,u);
}
dfs(1,0);
Build(1,n,1);
int m;scanf("%d",&m);
char op;int x;
for(int i = 0;i<m;++i){
scanf(" %c %d",&op,&x);
if(op == 'Q'){
printf("%d\n",Query(in[x],out[x],1));
}else{
UpdatePoint(in[x],1);
}
}
}
return 0;
}

POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)的更多相关文章

  1. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  2. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  3. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  4. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. hdu1166(线段树单点更新&区间求和模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 题意:中文题诶- 思路:线段树单点更新,区间求和模板 代码: #include <iost ...

  6. POJ 3321 Apple Tree DFS序 + 树状数组

    多次修改一棵树节点的值,或者询问当前这个节点的子树所有节点权值总和. 首先预处理出DFS序L[i]和R[i] 把问题转化为区间查询总和问题.单点修改,区间查询,树状数组即可. 注意修改的时候也要按照d ...

  7. POJ3321 - Apple Tree DFS序 + 线段树或树状数组

    Apple Tree:http://poj.org/problem?id=3321 题意: 告诉你一棵树,每棵树开始每个点上都有一个苹果,有两种操作,一种是计算以x为根的树上有几个苹果,一种是转换x这 ...

  8. hdu1394(枚举/树状数组/线段树单点更新&区间求和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题意:给出一个循环数组,求其逆序对最少为多少: 思路:对于逆序对: 交换两个相邻数,逆序数 +1 ...

  9. POJ 3321 Apple Tree DFS序+fenwick

    题目大意:有一颗长满苹果的苹果树,有两个操作. 1.询问以一个点为根的子树中有多少个苹果. 2.看看一个点有没有苹果,假设没有苹果.那么那里就立即长出一个苹果(= =!):否则就把那个苹果摘下来. 思 ...

随机推荐

  1. ios有些机型input和fixed导致的页面错位问题

    _fixIosInputH () { let [timeout, beforeTop] = [null, 0] $('input, textarea').on('focus', () => { ...

  2. gitlab+jenkins持续集成--http方式连接gitlab

    http://v.youku.com/v_show/id_XMjk3NTYyMDUxMg==.html?spm=a2h3j.8428770.3416059.1

  3. RAID卡的结构详解

    软件RAID的缺点如此之多,使人们不断地思考更多实现RAID的方法.既然软件缺点太多,那么用硬件实现如何呢? RAID卡就是一种利用独立硬件来实现RAID功能的方法.要在硬件上实现RAID功能,必须找 ...

  4. 如何寻找无序数组中的第K大元素?

    如何寻找无序数组中的第K大元素? 有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素.比如给定的无序数组如下所示: 如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二 ...

  5. CS224n学习笔记1——深度自然语言处理

    一.什么是自然语言处理呢? 自然语言处理是计算机科学家提出的名字,本质上与计算机语言学是同义的,它跨越了计算机学.语言学以及人工智能学科. 自然语言处理是人工智能的一个分支,在计算机研究领域中,也有其 ...

  6. bitcoin PoW原理及区块创建过程

    bitcoin PoW原理及区块创建过程 PoW 为了在点对点的基础上实现一个分布式时间戳服务器,我们需要使用PoW(Proof of Work)系统来达成共识.PoW过程就是寻找一个目标值的过程,当 ...

  7. C++ 函数 内联函数

    内联函数的功能和预处理宏的功能相似,在介绍内联函数之前,先介绍一下预处理宏.宏是简单字符替换,最常见的用法:定义了一个代表某个值的全局符号.定义可调用带参数的宏.作为一种约定,习惯上总是用大写字母来定 ...

  8. 关于httpServlet.service()步骤

    关于httpServlet.service()步骤 关于()方法 1.HTTP Servlet 使用一个 HTML 表格来发送和接收数据.要创建一个 HTTP Servlet,就需要扩展 HttpSe ...

  9. BufferedWriter与BufferedRead --------------------------Test

    package com.test; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; ...

  10. 福大软工1816 · 评分结果 · Alpha冲刺答辩总结

    作业地址:https://edu.cnblogs.com/campus/fzu/Grade2016SE/homework/2462 作业提交准则 按时交 - 有分 晚交 - 0分 迟交一周以上 - 倒 ...