题意:在0~n-1个数里选m个数和为k,数字可以重复选;

    如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板,那么也就是说一共有C(k-1, m-1)种组合(m-1是因为要m块只要m-1个隔板);

  回到这题,我们要求的并不是m个xi>0、而是xi>=0,但是隔板之间又不能为空,最少也是1,那就让m块每块都有一个球就好了,这样最少为1个的隔板间也就相当于是0个;但是此时的隔板插空处就又增加了,那么此时就变为将m+k个球分割成m块的问题,一共k+m-1个空,也就是组合数量为C(k+m-1, m-1);

  这样我们就知道了在xi无限制的情况下的组合数量,但是xi很明显是有限制的,对于xi有0<=xi<n;假设有m块里有1个xi>=n的情况下,要让问题保持在xi是取自[0, n-1]的范围内,那么就让那m块里其中一块变成已经放了n个球的情况,那么我们就相当于求在k-n+m-1个位置里插上m-1个隔板的方案数C(k-1*n+m-1, m-1);但是这个一块有m个位置可以选,也就是包括刚刚插空的方案还要加上选择时的方案即一共C(m, 1)*C(k-1*n+m-1, m-1);然后我们枚举当C(m, i)的i位为0~m时的所有情况, 令(-1)^i为容斥系数。答案就是

下面给出代码加注释:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+, INF=0x3f3f3f3f, mod=;///在这里k+m在最大值是2e5所以说保存阶乘和阶乘逆的数组要开2e5
void ex_gcd(ll a, ll b, ll &d, ll &x, ll &y){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
ll Inv(ll a, ll p){
ll d, x, y;
ex_gcd(a, p, d, x, y);
return d == ? (x % p + p) % p : -;
}
ll inv[N]={, };///保存i!的逆元
ll sum[N]={, };///保存i!
ll getC(int n, int m){///得到C(n, m)
if(n<m||m<){///如果不满足这些的情况是根本没有方案数的
return ;
}
return ((sum[n]*inv[m])%mod)*inv[n-m]%mod;
}
int main( ){
register int i, n, m, k, T;
register ll l, ans;
for(l=; l<N; ++l){
sum[l]=(sum[l-]*l)%mod;
inv[l]=Inv(sum[l], mod);
}
scanf("%d", &T);
while(T--){
ans=;
scanf("%d%d%d", &n, &m, &k);
for(i=; i*n<=k; ++i){
if(i&){
ans=((ans-getC(m, i)*getC(k-i*n+m-, m-)%mod)%mod+mod)%mod;///斥
}else{
ans=(ans+getC(m, i)*getC(k-i*n+m-, m-)%mod)%mod;///容
}
}
printf("%lld\n", ans);
}
}

拙略的代码

多校 HDU 6397 Character Encoding (容斥)的更多相关文章

  1. HDU 6397(2018多校第8场1001) Character Encoding 容斥

    听了杜教的直播后知道了怎么做,有两种方法,一种构造函数(现在太菜了,听不懂,以后再补),一种容斥原理. 知识补充1:若x1,x2,.....xn均大于等于0,则x1+x2+...+xn=k的方案数是C ...

  2. HDU 6397 Character Encoding (组合数学 + 容斥)

    题意: 析:首先很容易可以看出来使用FFT是能够做的,但是时间上一定会TLE的,可以使用公式化简,最后能够化简到最简单的模式. 其实考虑使用组合数学,如果这个 xi 没有限制,那么就是求 x1 + x ...

  3. hdu 6397 Character Encoding (生成函数)

    Problem Description In computer science, a character is a letter, a digit, a punctuation mark or som ...

  4. HDU - 6397 Character Encoding 2018 Multi-University Training Contest 8 (容斥原理)

    题意:问有多少种不重复的m个数,值在[0,n-1]范围内且和为k. 分析:当k<=n-1时,肯定不会有盒子超过n,结果是C(m+k-1,k):当k>m*(n-1)时,结果是0. 剩下的情况 ...

  5. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  6. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  7. 2017ACM暑期多校联合训练 - Team 2 1009 HDU 60563 TrickGCD (容斥公式)

    题目链接 Problem Description You are given an array A , and Zhu wants to know there are how many differe ...

  8. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  9. HDU 5297 Y sequence 容斥 迭代

    Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...

随机推荐

  1. UESTC 1832

    今天比赛的时候做的一个题目.感觉这个题目不错. 题目描述: Description In a laboratory, an assistant, Nathan Wada, is measuring w ...

  2. Python画统计图

    https://blog.csdn.net/jenyzhang/article/details/52046372

  3. 【BZOJ4006】【JLOI2015】管道连接

    Description 传送门 Solution 题目要求相同颜色的点必须在一个连通块中,但会有多个颜色同属一个连通块使得解更优的情况. 想一想DP能否行得通:设\(g_i\)表示已考虑颜色状态为\( ...

  4. scala 的安装 与 IDEA安装使用

    一.安装 scala 1.下载scala-2.11.8.msi 安装包,   首先去官网http://www.scala-lang.org/,然后点击导航栏的DOWNLOAD,进入下载链接:http: ...

  5. 使用EntitysCodeGenerate

    http://bbs.csdn.net/topics/360256700 public DataSet xxx(DateTime start, DateTime end, string type)   ...

  6. 数据中有NA存在,处理办法

    如果数据中有NA存在,表示这个位置数据遗失,不能进行值的类型描述.也不能用函数来计算,需要计算是可以加上na.rm=T表示忽略NA,但是这个位置并没有去除,使用length可以看到. > x&l ...

  7. Chapter 1(数据结构绪论)

    附件列表 数据结构绪论.jpg

  8. 服务器(Linux) 安装python3

    1.python3和python2可以共存,不用删自带的python2 服务器Linux下默认系统自带python2.6的版本,这个版本被系统很多程序所依赖,所以不建议删除.如果使用最新的Python ...

  9. unity还原three——顶点,三角面,uv

    public class Geometry { public Geometry(string name, Data data, Hashtable hash) { Debug.Log("解析 ...

  10. Mongodb 笔记01 MongoDB 简介、MongoDB基础知识、启动和停止MongoDB

    MongoDB 简介 1. 易于使用:没有固定的模式,根据需要添加和删除字段更加容易 2. 易于扩展:MongoDB的设计采用横向扩展.面向文档的数据模型使它能很容易的再多台服务器之间进行分割.自动处 ...