【BZOJ】2655: calc 动态规划+拉格朗日插值
【题意】一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和。n<=500,A<=10^9,n+1<A<mod<=10^9,mod是素数。
【算法】动态规划+拉格朗日插值
【题解】这道题每个数字的贡献和序列选了的数字积关系密切,所以不能从序列角度考虑(和具体数字关系不大)。
设$f_{n,m}$表示前n个数字(值域)中取m个数字的答案,那么枚举取或不取数字n,取n时乘n且有j个位置可以插入,即:
$$f_{i,j}=f_{i-1,j}+f_{i-1,j-1}*i*j$$
答案是$f_{A,n}$。这里最后再乘n!应该也是可以的,但是就不能插值了233。
打表法找规律见:【BZOJ2655】calc DP 数学 拉格朗日插值 by yww
观察法:假装正经地观察一下这个式子,下标j从j-1转移并乘上j,那么每次就多一个次数。但为什么最后要翻个倍就不是很清楚了。
不过拉格朗日插值插多了也没关系,所以可以通过对拍尝试小数据来试出最小插值。
复杂度O(n^2+n)。
【BZOJ】2655: calc 动态规划+拉格朗日插值的更多相关文章
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- 【BZOJ2655】Calc(拉格朗日插值,动态规划)
[BZOJ2655]Calc(多项式插值,动态规划) 题面 BZOJ 题解 考虑如何\(dp\) 设\(f[i][j]\)表示选择了\(i\)个数并且值域在\([1,j]\)的答案. \(f[i][j ...
- 【BZOJ2655】calc(拉格朗日插值)
bzoj 题意: 给出\(n\),现在要生成这\(n\)个数,每个数有一个值域\([1,A]\).同时要求这\(n\)个数两两不相同. 问一共有多少种方案. 思路: 因为\(A\)很大,同时随着值域的 ...
- bzoj 2655: calc [容斥原理 伯努利数]
2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...
- [BZOJ 2655]calc
Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...
- P4463 [国家集训队] calc(拉格朗日插值)
传送门 设\(dp[i][j]\)为考虑\(i\)个数,其中最大值不超过\(j\)的答案,那么转移为\[dp[i][j]=dp[i-1][j-1]\times i\times j+dp[i][j-1] ...
- BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...
随机推荐
- eureka集群高可用配置
譬如eureka.client.register-with-eureka和fetch-registry是否要配置,配不配区别在哪里:eureka的客户端添加service-url时,是不是需要把所有的 ...
- [转帖]go 的goroutine 以及 channel 的简介.
进程,线程的概念在操作系统的书上已经有详细的介绍.进程是内存资源管理和cpu调度的执行单元.为了有效利用多核处理器的优势,将进程进一步细分,允许一个进程里存在多个线程,这多个线程还是共享同一片内存空间 ...
- uva 11525(线段树)
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- dbgrid控件如何能在左边显示行号?
procedure TMSWageEdit.aqyMSWageEditCalcFields(DataSet: TDataSet);begin inherited; with DataSet do ...
- Tomcat安全配置与性能优化
Tomcat 是 Apache软件基金会下的一个免费.开源的WEB应用服务器,它可以运行在 Linux 和 Windows 等多个平台上,由于其性能稳定.扩展性好.免费等特点深受广大用户喜爱.目前,很 ...
- BZOJ5321 JXOI2017加法(二分答案+贪心+堆+树状数组)
二分答案后得到每个位置需要被加的次数.考虑贪心.从左到右考虑每个位置,将以该位置为左端点的区间按右端点从大到小加进堆.看该位置还需要被加多少次,如果不需要加了就不管,否则取堆顶区间将其选择,BIT实现 ...
- java的break跳出多层循环
记得大一的时候,语言学的不好,碰到了需要跳出双层循环的时候,就没有了办法.因为老师讲了goto然后说不要用goto... 自己就一直感觉这种跳出多层循环的想法是不可取的(好蠢) 下面用java代码的 ...
- [LOJ3052] [十二省联考 2019] 春节十二响
题目链接 LOJ:https://loj.ac/problem/3052 洛谷:https://www.luogu.org/problemnew/show/P5290 BZOJ:https://www ...
- 【bzoj2438】 中山市选2011—杀人游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=2438 (题目链接) 题意 n个点的有向图,其中有一个是杀手,每个人成为杀手的概率相同.警察询问一个人 ...
- linux内核设计与实现一书阅读整理 之第十八章
CHAPTER 18 调试 18.1 准备开始 需要的是准备是: - 一个bug - 一个藏匿bug的内核版本 - 相关内核代码的知识和运气 重点: 想要成功的进行调试,就取决于是否能让这些错误重现. ...