题目描述

给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出
get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次。

输入

第一行,一个数字N,表示序列长度。
第二行,N个数字,表示a1~aN
第三行,一个数字Q,表示询问个数。
第4~Q+3行,每行四个数字l1,r1,l2,r2,表示询问。
N,Q≤50000
N1≤ai≤N
1≤l1≤r1≤N
1≤l2≤r2≤N
注意:答案有可能超过int的最大值

输出

对于每组询问,输出一行一个数字,表示答案

样例输入

5
1 1 1 1 1
2
1 2 3 4
1 1 4 4

样例输出

4
1


题解

莫队算法

(为了方便,以下使用$S_x(l,r)$代替$get(l,r,x)$)

题目一眼莫队,不过由于一个询问有4个参数,不能直接处理。

考虑将询问拆成前缀相减的形式,即:

$\ \ \ \ \sum\limits_xS_x(l_1,r_1)·S_x(l_2,r_2)\\=\sum\limits_{x}(S_x(1,r_1)-S_x(1,l_1-1))·(S_x(1,r_2)-S_x(1,l_2-1))\\=\sum\limits_{x}(S_x(1,r_1)·S_x(1,r_2)-S_x(1,l_1-1)·S_x(1,r_2)--S_x(1,r_1)·S_x(1,l_2-1)+S_x(1,l_1-1)·S_x(1,l_2-1))\\=Q(r_1,r_2)-Q(l_1-1,r_2)-Q(r_1,l_2-1)+Q(l_1-1,l_2-1)$

其中:

$Q(a,b)=\sum\limits_{x}S_x(1,a)·S_x(1,b)$

于是就可以把每个询问拆成4个,使用莫队算法分别计算对每个答案的贡献即可。

注意当$a$或$b$中某一个为0时的情况需要过滤掉,否则会加入不存在的位置导致挂掉。

时间复杂度$O(n\sqrt{4m})$

#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 50010
using namespace std;
typedef long long ll;
int si , v[N] , cl[N] , cr[N] , tot;
ll ans[N];
struct data
{
int l , r , flag , id;
data() {}
data(int a , int b , int c , int d) {l = min(a , b) , r = max(a , b) , flag = c , id = d;}
bool operator<(const data &a)const {return (l - 1) / si == (a.l - 1) / si ? r < a.r : (l - 1) / si < (a.l - 1) / si;}
}a[N << 2];
int main()
{
int n , m , i , x1 , y1 , x2 , y2 , lp = 0 , rp = 0;
ll now = 0;
scanf("%d" , &n) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
scanf("%d" , &m);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d%d" , &x1 , &y1 , &x2 , &y2) , a[++tot] = data(y1 , y2 , 1 , i);
if(x1 > 1) a[++tot] = data(x1 - 1 , y2 , -1 , i);
if(x2 > 1) a[++tot] = data(y1 , x2 - 1 , -1 , i);
if(x1 > 1 && x2 > 1) a[++tot] = data(x1 - 1 , x2 - 1 , 1 , i);
}
sort(a + 1 , a + tot + 1);
for(i = 1 ; i <= tot ; i ++ )
{
while(lp < a[i].l) lp ++ , now += cr[v[lp]] , cl[v[lp]] ++ ;
while(rp < a[i].r) rp ++ , now += cl[v[rp]] , cr[v[rp]] ++ ;
while(lp > a[i].l) cl[v[lp]] -- , now -= cr[v[lp]] , lp -- ;
while(rp > a[i].r) cr[v[rp]] -- , now -= cl[v[rp]] , rp -- ;
ans[a[i].id] += a[i].flag * now;
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
return 0;
}

【bzoj5016】[Snoi2017]一个简单的询问 莫队算法的更多相关文章

  1. Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥

    传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...

  2. BZOJ5016:[SNOI2017]一个简单的询问(莫队)

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  3. 【BZOJ5016】[Snoi2017]一个简单的询问 莫队

    [BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ...

  4. bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...

  5. BZOJ5016 Snoi2017一个简单的询问(莫队)

    容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ...

  6. [bzoj5016][Snoi2017]一个简单的询问

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出   get(l,r,x)表示计算区间[l,r]中 ...

  7. [SNOI2017]一个简单的询问

    [SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...

  8. bzoj 5016: [Snoi2017]一个简单的询问

    Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...

  9. 【bzoj3781】小B的询问 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L ...

随机推荐

  1. DBNull.Value 与null

    来源:http://blog.csdn.net/beautifulsarah/article/details/54691670 DBNull.Value,, 适用于向数据库的表中插入空值.而 null ...

  2. HTML5扩展之微数据与丰富网页摘要——张鑫旭

    一.微数据是? 一个页面的内容,例如人物.事件或评论不仅要给用户看,还要让机器可识别.而目前机器智能程度有限,要让其知会特定内容含义,我们需要使用规定的标签.属性名以及特定用法等.举个简单例子,我们使 ...

  3. 【代码笔记】iOS-gif图片播放

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  4. Git学习 之 安装

    1.官网下载 https://git-scm.com/downloads 2.修改安装目标路径,其他默认安装 3.通过系统管理员身份打开cmd,输入git 检查是否安装成功

  5. H5新增属性classList

    H5新增属性classList h5中新增了一个classList,原生js可以通过它来判断获取dom节点有无某个class. classList是html元素对象的成员,它的使用非常简单,比如 co ...

  6. 浏览器根对象document之数值和布尔属性

    1.1 节点类型 ELEMENT_NODE 1 一个 元素 节点,例如 <p> 和 <div>. TEXT_NODE 3 Element 或者 Attr 中实际的文字 PROC ...

  7. 空间数据的WKT和WKB表现形式

    WKT(well-known text)是一种文本标记语言,该格式由开放地理空间联盟(OGC)制定,用于表示矢量数据中的几何对象,在数据传输与数据库存储时,常 用到它的二进制形式,即WKB(well- ...

  8. python的学习笔记之——time模块常用内置函数

    1.Python time time()方法 Python time time() 返回当前时间的时间戳(1970纪元后经过的浮点秒数). time()方法语法: time.time() 举例: #! ...

  9. angularjs -- 路由监听

    前几天,项目在做一个功能时需要在页面切换之前关闭正在执行的函数.尝试了几种方式都不行,最后想到既然angularjs是通过理由切换页面,那就在路由上面做文章吧.AngularJS在路由发生改变时,可以 ...

  10. 【转】证书的应用之一 —— TCP&SSL通信实例及协议分析(下)

    原文链接 前面两部分分别讲解了如何在.net程序中使用SSL实现安全通信以及SSL的通信过程,并通过抓包工具具体分析了ssl的握手过程,本文通过一个demo来模拟ssl协议,在TCP之上实现自己的安全 ...