ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)
(本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ
----------数论四大定理---------
数论四大定理:
1.威尔逊定理
2.欧拉定理
3.孙子定理(中国剩余定理)
4.费马小定理
(提示:以后出现(mod p)就表示这个公式是在求余p的条件下成立)
1.威尔逊定理:(PS:威尔逊是个厉害人)
当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p )
或者这么写( p -1 )! ≡ p-1 ( mod p )
或者说
若p为质数,则p能被(p-1)!+1整除
在初等数论中
这是威尔逊给出了判定一个自然数是否为 素数 的 充分必要条件
但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。(´・ω・`)(威尔逊表示很伤心)
2.欧拉定理:(PS:欧拉是个厉害人)
3.孙子定理(中国剩余定理):(PS:孙子是个厉害人。。。这话怎么在哪里听过( ・◇・)?好耳熟)
孙子定理,又称中国剩余定理。
公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。
就是说,有一个东西不知道有多少个,但是它求余3等于2,求余5等于3,求余7等于2,问这个东西有多少个?”答为“23”。

中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组 (S)有解
至于怎么求解,以后再讲
4.费马小定理:(PS:费马是个厉害人。。。好了最后一遍,不玩了)
顺便一提,费马大定理
这是数论的一些基础,以后会用的上的 ̄ 3 ̄
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)的更多相关文章
- ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)
中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这 ...
- ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )
记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p , n<=1e18,m<=1e18 ...
- acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我) (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- ACM数论之旅16---母函数(又名生成函数)(痛并快乐着(╭ ̄3 ̄)╭)
(前排出售零食瓜子) 前言: 母函数是个很难的东西,难在数学 而ACM中所用的母函数只是母函数的基础 应该说除了不好理解外,其他都是非常简单的 母函数即生成函数,是组合数学中尤其是计数方面的一个重要理 ...
- ACM数论之旅11---浅谈指数与对数(长篇)(今天休息,不学太难的数论> 3<)
c/c++语言中,关于指数,对数的函数我也就知道那么多 exp(),pow(),sqrt(),log(),log10(), exp(x)就是计算e的x次方,sqrt(x)就是对x开根号 pow()函数 ...
随机推荐
- [COCI2009]Dvapravca 计算几何
[COCI2009]Dvapravca LG传送门 先给出考场上的\(O(n^3)\)乱搞方法:枚举一个蓝点和一个红点,找出过着两个点的直线,再枚举蓝点找出这条直线最多能往两边扩展多宽,最后枚举红点计 ...
- springmvc配置中,mapper一直依赖注入不进去的问题记录
问题还原: service层在引用mapper层接口时,一直依赖注入不进去.查看spring-context.xml配置,也未发现异常[因为以前就是这么配置],但是始终无法注入. 原因: 问题不出在s ...
- 402. Remove K Digits/738.Monotone Increasing Digits/321. Create Maximum Number
Given a non-negative integer num represented as a string, remove k digits from the number so that th ...
- VS2017+CMake+OpenCV下报错 set OpenCV_FOUND to FALSE
问题 在 VS 2017 中使用Cmake 管理项目, 使用 opencv 库, 在find package的时候出现能找到 OpenCVConfig.cmake的文件,但是设置 OpenCV_Fou ...
- PHPCMS V9 二次开发常用代码集
0:调用最新文章,带所在版块 {pc:get sql="SELECT a.title, a.catid, b.catid, b.catname, a.url as turl ,b.url a ...
- ltrace命令详解
原文链接:https://ipcmen.com/ltrace 用来跟踪进程调用库函数的情况 补充说明 NAME ltrace - A library call tracer ltrace命 ...
- 教你用Python解决非平衡数据问题(附代码)
本文为你分享数据挖掘中常见的非平衡数据的处理,内容涉及到非平衡数据的解决方案和原理,以及如何使用Python这个强大的工具实现平衡的转换. 后台回复“不平衡”获取数据及代码~ 前言 好久没有更新自己写 ...
- Java将json字符串转成map
Map<String, Object> map = (Map<String, Object>) JSONUtils.parse(result)
- [BUAA_SE_2017]结对项目-数独程序扩展
结对项目-数独程序扩展 Runnable on x64 Only sudoku17.txt 须放置在可执行文件同目录中,可移步以下链接进行下载 Core-Github项目地址 GUI-Github项目 ...
- 20162314 《Program Design & Data Structures》Learning Summary Of The Ninth Week
20162314 2017-2018-1 <Program Design & Data Structures>Learning Summary Of The Ninth Week ...