(本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ

----------数论四大定理---------

数论四大定理:

1.威尔逊定理

2.欧拉定理

3.孙子定理(中国剩余定理)

4.费马小定理

(提示:以后出现(mod p)就表示这个公式是在求余p的条件下成立)

1.威尔逊定理:(PS:威尔逊是个厉害人)

当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p )

或者这么写( p -1 )! ≡ p-1 ( mod p )

或者说

若p为质数,则p能被(p-1)!+1整除

在初等数论中

这是威尔逊给出了判定一个自然数是否为 素数 的 充分必要条件

但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。(´・ω・`)(威尔逊表示很伤心)

2.欧拉定理:(PS:欧拉是个厉害人)

欧拉定理,也称费马-欧拉定理
若n,a为正整数,且n,a互质,即gcd(a,n) = 1,则
a^φ(n) ≡ 1 (mod n)
 
φ(n) 是欧拉函数
  欧拉函数是求小于等于n的数中与n互质的数的数目  
(o>▽<)太长看不懂?我来帮你断句
  欧拉函数是求 (小于n的数 )中 (与n互质的数 )的数目
或者说
  欧拉函数是求 1到n-1 中 与n互质的数 的数目
 
如果n是质数
那么1到n-1所有数都是与n互质的,
所以φ(n) = n-1
如果n是合数。。。自己算吧
例如φ(8)=4,因为1,3,5,7均和8互质
 
 
顺便一提,这是欧拉定理
φ(n)是欧拉函数
还有一个欧拉公式
eix = cosx + isinx
把x用π带进去,变成
e= -1
大部分人写成 e + 1 = 0
 
这是一个令万人膜拜的伟大公式
引用一个名人的话(我忘了是谁( ̄▽ ̄lll)):
"它把自然对数e,虚数i,无理数π,自然界中的有和无(1和0)巧妙的结合了起来,上帝如果不存在,怎么会有这么优美的公式。
如何见到它第一眼的人没有看到它的魅力,那它一定成不了数学家"
 
一定要分清 欧拉定理,欧拉函数和欧拉公式这3个东西,要不然你就百度不到你想要的东西了(其实我在说我自己 ̄ε  ̄)
 
 
 
 
 
 
 
 
 
 
 

3.孙子定理(中国剩余定理):(PS:孙子是个厉害人。。。这话怎么在哪里听过( ・◇・)?好耳熟)

孙子定理,又称中国剩余定理。

公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。

就是说,有一个东西不知道有多少个,但是它求余3等于2,求余5等于3,求余7等于2,问这个东西有多少个?”答为“23”。

用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组:

中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组 (S)有解

至于怎么求解,以后再讲

4.费马小定理:(PS:费马是个厉害人。。。好了最后一遍,不玩了)

假如p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p),若p能整除a,则a^(p-1) ≡0(mod p)。
或者说,若p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1。
 
 
你看你看你看o(*≧▽≦)ツ,是不是和欧拉定理很像
 
因为欧拉定理是费马小定理的推广,所以欧拉定理也叫费马-欧拉定理(费马:欧拉是坏人(/TДT)/,盗取我的成果,然后加以利用)

顺便一提,费马大定理

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。
它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。
被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

这是数论的一些基础,以后会用的上的 ̄ 3 ̄

ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)的更多相关文章

  1. ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)

    中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这 ...

  2. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  3. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  4. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  5. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  6. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  7. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  8. ACM数论之旅16---母函数(又名生成函数)(痛并快乐着(╭ ̄3 ̄)╭)

    (前排出售零食瓜子) 前言: 母函数是个很难的东西,难在数学 而ACM中所用的母函数只是母函数的基础 应该说除了不好理解外,其他都是非常简单的 母函数即生成函数,是组合数学中尤其是计数方面的一个重要理 ...

  9. ACM数论之旅11---浅谈指数与对数(长篇)(今天休息,不学太难的数论> 3<)

    c/c++语言中,关于指数,对数的函数我也就知道那么多 exp(),pow(),sqrt(),log(),log10(), exp(x)就是计算e的x次方,sqrt(x)就是对x开根号 pow()函数 ...

随机推荐

  1. Codeforces 1155 D Beautiful Array DP,最大子段和

    题意 给出一个长度为\(n\)的数列和数字\(x\),经过最多一次操作将数列的一个子段的每个元素变为\(a[i]*x\),使该数列的最大子段和最大 分析 将这个数列分为3段考虑,第一段和第三段是未修改 ...

  2. [BZOJ4883][Lydsy1705月赛]棋盘上的守卫[最小基环树森林]

    题意 有一大小为 \(n*m\) 的棋盘,要在一些位置放置一些守卫,每个守卫只能保护当前行列之一,同时在每个格子放置守卫有一个代价 \(w\) ,问要使得所有格子都能够被保护,需要最少多少的代价. \ ...

  3. JNDI是什么,怎么理解

    JNDI 是什么 JNDI是 Java 命名与目录接口(Java Naming and Directory Interface),在J2EE规范中是重要的规范之一,不少专家认为,没有透彻理解JNDI的 ...

  4. ionic生成签名的APK方法总结

    ionic生成签名的apk步骤如下: 1. 在项目目录下运行 ionic build android --release 先生成一个未签名的apk 2. 在项目目录下运行 keytool -genke ...

  5. 六、Django之表单和类视图-Part 4

    一.表单form 为了接收用户的投票选择,我们需要在前端页面显示一个投票界面.让我们重写先前的polls/detail.html文件,代码如下: <h1>{{ question.quest ...

  6. .NET处理Json的几种方式

    序列化里的xml,soap,binary在上一篇文章里面已经说过了,这篇主要说json. json是目前非常流行的一种序列化数据的方式,很多api都采用的是json,结构简洁,容易理解,适用性强,逐渐 ...

  7. 如何通过阿里云APP进行域名备案?阿里云备案流程需要多久?

    如何通过阿里云APP进行域名备案? 1.准备备案材料(很多初次使用阿里云APP进行备案的同学会问备案需要准备哪些资料,不二版本下面就给大家一一列举出来) 个人备案需要材料: ⑴<用户网站备案授权 ...

  8. Scrum Meeting 11.08

    成员 今日任务 明日计划 用时 徐越       赵庶宏       薄霖       卞忠昊 WebView和JavaScript交互基础 Bitmap(位图)全解析 Part1 3h  武鑫 设计 ...

  9. second scrum meeting - 151026

    摘要:这一周的工作其实进行的并没有很迅速~不过我们团队的每个人都在慢慢进行自己的工作,并且我们也完成了大致的页面设计,开发了主页面的框架,并且我们也会开始着手学习服务器的操作,还有更加完善主页面的框架 ...

  10. 每日Scrum(10)

    今天我们小组整合了下我们所编辑的程序,然后在界面上进行了修改和少部分的完善,现在就等着下午的验收了 任务展板 燃尽图如下: