ACdream1093
给你三种正多面体,正四面体,正六面体,正八面体。求从某一种正多面体中的某一点走到另一个点,且步数不超过k(1018)的方案数。
首先说明一下我交题的时候遇到的问题,起点和终点为同一点的时候,算不算走了零步到达了?题目没有算,如果考虑了交上去会wa。
题目解法是矩阵。
一开始通过观察这三种多面体,得出初始矩阵。 这里要细心。
显然我们可以通过矩阵乘法迅速地知道从一点到另一点走k步的方案数。假设矩阵是a[][],那么x->y的方案就是a[x][y]。
要求不超过k步的方案,就相当于前k个矩阵求和了(前k次方和)。因为矩阵有很多性质跟数是一样的,我们可以用类似的方法求解。
我也不知道自己用的是什么方法,反正这样写可以过。不过好像时间上不是最优的。
召唤代码君:
/*
* this code is made by 092000
* Problem: 1093
* Verdict: Accepted
* Submission Date: 2014-07-20 10:06:15
* Time: 592MS
* Memory: 1676KB
*/
#include <iostream>
#include <cstdio>
#include <cstring>
typedef long long ll;
using namespace std; const int mod=;
ll k;
int n,I,J,T; int a4[][]={
{,,,},
{,,,},
{,,,},
{,,,},
}; int a6[][]={
{,,,,,},
{,,,,,},
{,,,,,},
{,,,,,},
{,,,,,},
{,,,,,},
}; int a8[][]={
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
{,,,,,,,},
}; struct mat{
ll a[][];
void init0()
{
memset(a,,sizeof a);
}
void init1()
{
init0();
for (int i=; i<n; i++) a[i][i]=;
}
void init(int x)
{
init0();
if (x==)
{
for (int i=; i<; i++)
for (int j=; j<; j++) a[i][j]=a4[i][j];
}
else if (x==)
{
for (int i=; i<; i++)
for (int j=; j<; j++) a[i][j]=a6[i][j];
}
else
{
for (int i=; i<; i++)
for (int j=; j<; j++) a[i][j]=a8[i][j];
}
}
}; mat add(mat e1,mat e2)
{
mat e0;
for (int i=; i<n; i++)
for (int j=; j<n; j++)
e0.a[i][j]=(e1.a[i][j]+e2.a[i][j])%mod;
return e0;
} mat mul(mat e1,mat e2)
{
mat e0;
e0.init0();
for (int i=; i<n; i++)
for (int j=; j<n; j++)
for (int k=; k<n; k++) e0.a[i][j]=(e0.a[i][j]+e1.a[i][k]*e2.a[k][j])%mod;
return e0;
} mat power(mat e,ll y)
{
mat e0;
e0.init1();
while (y)
{
if (y&) e0=mul(e0,e);
e=mul(e,e),y>>=;
}
return e0;
} int main()
{
mat ans,tmp,squ,E;
ll answer;
scanf("%d",&T);
while (T--)
{
scanf("%d",&n);
scanf("%lld",&k);
scanf("%d",&I);
scanf("%d",&J);
//scanf("%d%lld%d%d",&n,&k,&I,&J);
if (n==) n=;
else if (n==) n=;
ans.init0();
tmp.init1();
squ.init1();
E.init(n);
while (k)
{
if (k&) ans=add(ans,mul(tmp,power(E,k)));
k>>=;
tmp=mul(tmp,add(power(E,k),squ));
}
answer=ans.a[I-][J-];
//if (I==J) answer++;
answer%=mod;
printf("%d\n",(int)answer);
}
return ;
}
ACdream1093的更多相关文章
随机推荐
- Distributed2:SQL Server 创建分布式数据库
分布式数据库的优势是将IO分散在不同的Physical Disk上,每次查询都由多台Server的CPU,I/O共同负载,通过各节点并行处理数据来提高性能,劣势是消耗大量的网络带宽资源,管理难度大.在 ...
- 【JUC源码解析】Phaser
简介 Phaser,阶段器,可作为一个可复用的同步屏障,与CyclicBarrier和CountDownLatch类似,但更强大. 全览图 如上图所示,phaser,支持phaser树(图中,简化为p ...
- Object Relational Mapping框架之Hibernate
hibernate框架简介: hibernate框架就是开发中在持久层中应用居多的ORM框架,它对JDBC做了轻量级的封装. (百度介绍,感觉不错) 什么是ORM:Object Relational ...
- 使用CDN后配置nginx自定义日志获取访问用户的真实IP
问题描述: 新上线了一个项目,架构如下(简单画的理解就好): 问题是:负载前面加上CDN后负载这里无法获取客户的真实访问IP,只能过去到CDN的IP地址: 问题解决: 修改nginx日 ...
- [C++]linux下实现rm()函数删除文件或目录
转载请注明原创:http://www.cnblogs.com/StartoverX/p/4600866.html 在linux下有两个函数可以用来删除文件: #include <unistd.h ...
- JDK 和 JRE 有什么区别
JDK是Java开发工具包(Java Development Kit),JRE是Java运行环境(Java Runtime Environment),JDK包含了JRE,搭建Java环境的时候,安装J ...
- 通过python将xml文件转换成html文件
#数据类型的转换 def main(): maxwidth = 100 #用于规范字段的长度 print_start() count=0 while True: ...
- 【Skynet】Traceback汇总
error: ./skynet/lualib/skynet.lua:534: ./skynet/lualib/skynet.lua:156: ./logic/gate/socket_msg.lua:5 ...
- SDN学习笔记
SDN 什么是SDN SDN是一种框架和思想,核心诉求是通过软件控制网络,实现业务的自动化部署,为方便软件来控制网络,希望控制面和转发面是分离的. 例如,传统的交换机内部,由交换机负责具体的网络流量往 ...
- Tesseract 4 自行构建支持双引擎的tessdata 文件
Tesseract 4 版本具备两种识别引擎:新的基于LSTM(神经网络)引擎与传统引擎.通过在初始化时设定不同的EngineMode启动. OCR Engine modes: 0 Legacy en ...