Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

A subsequence of a string S is obtained by deleting 0 or more characters from S.

A sequence is palindromic if it is equal to the sequence reversed.

Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_

Example 1:

Input:
S = 'bccb'
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'.
Note that 'bcb' is counted only once, even though it occurs twice.

Example 2:

Input:
S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba'
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.

Note:

  • The length of S will be in the range [1, 1000].
  • Each character S[i] will be in the set {'a', 'b', 'c', 'd'}.

Approach #1: DFS + Memeory. [C++][MLE]

class Solution {
public:
int countPalindromicSubsequences(string S) {
return count(S);
} private:
unordered_map<string, long> memo;
static constexpr long mod = 1000000007; int count(const string& s) {
if (s.empty()) return 0;
if (s.length() == 1) return 1;
if (memo[s] > 0) return memo[s];
int len = s.length();
long ans = 0;
if (s[0] == s[len-1]) {
int l = 1, r = len - 2;
while (l <= r && s[l] != s[0]) l++;
while (l <= r && s[r] != s[len-1]) r--;
if (l > r) ans = count(s.substr(1, len-2))*2 + 2;
else if (l == r) ans = count(s.substr(1, len-2))*2 + 1;
else ans = count(s.substr(1, len-2))*2 - count(s.substr(l+1, r-l-1));
} else {
ans = count(s.substr(0, len-1)) + count(s.substr(1, len-1)) - count(s.substr(1, len-2));
} ans = (ans + mod) % mod;
// cout << ans << endl; return memo[s] = ans;
}
};

  

Approach #2: Optimization. [C++]

class Solution {
public:
int countPalindromicSubsequences(string S) {
int len = S.length();
memo = vector<int>(len*(len+1)+1, 0);
return count(S, 0, len-1);
} private:
vector<int> memo;
static constexpr long mod = 1000000007; int count(const string& S, int s, int e) {
if (s > e) return 0;
if (s == e) return 1;
int key = s * S.length() + e;
if (memo[key] > 0) return memo[key];
int len = S.length();
long ans = 0;
if (S[s] == S[e]) {
int l = s+1, r = e-1;
while (l <= r && S[l] != S[s]) l++;
while (l <= r && S[r] != S[e]) r--;
if (l > r) ans = count(S, s+1, e-1)*2 + 2;
else if (l == r) ans = count(S, s+1, e-1)*2 + 1;
else ans = count(S, s+1, e-1)*2 - count(S, l+1, r-1);
} else {
ans = count(S, s+1, e) + count(S, s, e-1)
- count(S, s+1, e-1);
} return memo[key] = (ans + mod) % mod;
}
};

  

Approach #3: DP. [C++]

class Solution {
long mod = 1000000007;
public int countPalindromicSubsequences(String S) {
int len = S.length();
long[][] dp = new long[len][len];
for (int i = 0; i < len; ++i)
dp[i][i] = 1;
for (int k = 1; k <= len; ++k) {
for (int i = 0; i < len-k; ++i) {
int j = i + k;
if (S.charAt(i) == S.charAt(j)) {
dp[i][j] = dp[i+1][j-1] * 2;
int l = i + 1;
int r = j - 1;
while (l <= r && S.charAt(l) != S.charAt(i)) l++;
while (l <= r && S.charAt(r) != S.charAt(j)) r--;
if (l > r) dp[i][j] += 2;
else if (l == r) dp[i][j] += 1;
else dp[i][j] -= dp[l+1][r-1];
} else
dp[i][j] = dp[i+1][j] + dp[i][j-1] - dp[i+1][j-1];
dp[i][j] = (dp[i][j] + mod) % mod;
}
}
return (int)dp[0][len-1];
}
}

  

Reference:

http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-730-count-different-palindromic-subsequences/

730. Count Different Palindromic Subsequences的更多相关文章

  1. leetcode 730 Count Different Palindromic Subsequences

    题目链接: https://leetcode.com/problems/count-different-palindromic-subsequences/description/ 730.Count ...

  2. LN : leetcode 730 Count Different Palindromic Subsequences

    lc 730 Count Different Palindromic Subsequences 730 Count Different Palindromic Subsequences Given a ...

  3. [LeetCode] 730. Count Different Palindromic Subsequences 计数不同的回文子序列的个数

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  4. 【LeetCode】730. Count Different Palindromic Subsequences 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 动态规划 日期 题目地址:https:/ ...

  5. [LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  6. [Swift]LeetCode730. 统计不同回文子字符串 | Count Different Palindromic Subsequences

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  7. Count Different Palindromic Subsequences

    Given a string S, find the number of different non-empty palindromic subsequences in S, and return t ...

  8. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  9. leetcode 学习心得 (4)

    645. Set Mismatch The set S originally contains numbers from 1 to n. But unfortunately, due to the d ...

随机推荐

  1. MySQL主从复制备份

    前言 数据库实时备份的需求很常见,MySQL本身提供了 Replication 机制,摘译官方介绍如下: MySQL Replication 可以将一个主数据库中的数据同步到一个或多个从数据库中.并且 ...

  2. [PHP] constant variable

    print: 3.13 PI 3.14

  3. httpclient学习(原创)

    --httpmime-4.2.5.jar  跟提交Form相关的类 这一块主要post数据的提交.每一条数据同name和content组成.content可能是字节数组或是流.提交这一类(MIME)的 ...

  4. linq 使用or构建动态查询

    You can certainly do it within a Where clause (extension method). If you need to build a complex que ...

  5. hadoop 学习(一)ubuntu14.04 hadoop 安装

    1.创建用户组 sudo addgroup hadoop 2.创建用户 sudo adduser -ingroup hadoop hadoop 回车之后会提示输入密码,输入自己要设定的密码然后一路回车 ...

  6. XE7 里面添加自定义View

    经过xe4,xe5,xe6 这么几个版本的磨合,易博龙终于在今年9月推出了统一的多平台开发版本-XE7. 经过最近几天的测试,非常不错.如果各位同学在做移动开发,强烈建议使用XE7. 前面几个版本可以 ...

  7. 521. Longest Uncommon Subsequence I

    static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...

  8. 2018.09.30 bzoj3551:Peaks加强版(dfs序+主席树+倍增+kruskal重构树)

    传送门 一道考察比较全面的题. 这道题又用到了熟悉的kruskal+倍增来查找询问区间的方法. 查到询问的子树之后就可以用dfs序+主席树统计答案了. 代码: #include<bits/std ...

  9. 2018.09.14 codechef Milestone(随机化算法)

    传送门 由于存在不超过7条直线可以覆盖超过所有的点. 所以如果我们随机选点的话(每次随机两个) 那么得到的解恰好为最优解的概率是149" role="presentation&qu ...

  10. 2018.09.08 bzoj1531: [POI2005]Bank notes(二进制拆分优化背包)

    传送门 显然不能直接写多重背包. 这题可以用二进制拆分/单调队列优化(感觉二进制好写). 所谓二进制优化,就是把1~c[i]拆分成20,21,...2t,c[i]−2t+1+1" role= ...