1、各层作用

    • 输入层 
      输入层是整个神经网络的输入,一般代表的是图片的像素矩阵(一般为三维矩阵,即像素x像素x通道)

    • 卷积层 
      每一层卷积都会提取数据特征,再经过组合和抽象形成更高阶的特征。

    • 池化层 
      保留最显著的特征,提升模型的畸变容忍能力(平移不变性)。池化层可以非常有效地缩小图片的尺寸。从而减少最后全连接层的参数,在加快计算速度的同时也防止了过拟合的产生,提高了模型的泛化能力。最大池化层(max pooling),计算图像区域内最大值,提取纹理效果较好;平均池化层(mean pooling),计算图像区域的平均值,保留背景更好。

    • 全连接层 
      图像中被抽象成了信息含量更高的特征在经过神经网络完成后续分类等任务。

    • 输出层 
      一般是使用softmax输出概率值或者分类结果。

2、feature map尺寸计算

2.1 卷积层

输入图片的尺寸大小W1 x H1

卷积核(又称滤波器)的大小F x F

输出图片的尺寸大小W2 x H2

stride:S

padding:P

关系式如下: 
W2 = (W1-F+2P)/S + 1 
H2 = (H1-F+2P)/S + 1

2.2 池化层

输入图片的尺寸大小W1 x H1

卷积核(又称滤波器)的大小F x F

输出图片的尺寸大小W2 x H2

stride:S

关系式如下: 
W2 = (W1-F)/S + 1 
H2 = (H1-F)/S + 1

3、权值共享

每一个卷积层中使用的过滤器参数是相同的,这就是卷积核的权值共享

  • 从直观上理解,共享卷积核可以使得图像上的内容不受位置的影响,这提高了模型对平移的容忍性,这大大的提高了模型提取特征的能力
  • 从网络结构上来说,共享每一个卷积层的卷积核,可以大大减少网络的参数,这不仅可以降低计算的复杂度,而且还能减少因为连接过多导致的严重过拟合,从而提高了模型的泛化能力

CNN细节的更多相关文章

  1. Deep Learning 资料总结

    http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ : 理解神经网络   ELU:

  2. 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型

    人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...

  3. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  4. 卷积神经网络(CNN)的细节问题(滤波器的大小选择)

    0. 滤波器的大小选择 大部分卷积神经网络都会采用逐层递增(1⇒ 3 ⇒ 5 ⇒ 7)的方式. 每经过一次池化层,卷积层过滤器的深度都会乘以 2: 1. 权值共享:减轻过拟合 & 降低计算量 ...

  5. CNN中卷积层的计算细节

    原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输 ...

  6. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  7. CNN训练Cifar-10技巧

    关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目 ...

  8. Deep learning with Theano 官方中文教程(翻译)(四)—— 卷积神经网络(CNN)

    供大家相互交流和学习,本人水平有限,若有各种大小错误,还请巨牛大牛小牛微牛们立马拍砖,这样才能共同进步!若引用译文请注明出处http://www.cnblogs.com/charleshuang/. ...

  9. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

随机推荐

  1. bzoj 4521: [Cqoi2016]手机号码

    感觉get到了一种数位dp的新姿势,加一位表示当前要填的数有没有限制(感觉以前的写法都太蠢了). 这么写有两个地方要注意: 1.每dp到一位时需要f[i][初始状态]++,相当于这位前都是前导零(这道 ...

  2. Tensorflow训练神经网络

    以下代码摘自<Tensorflow实战Google 深度学习框架>. 由于这段代码包含了激活函数去线性化,多层神经网络,指数衰减学习率,正则化防止过拟合,滑动平均稳定模型等手段,涵盖了神经 ...

  3. Python 类编码风格

    1.命名 类名:(1)单词首字母均大写 (2)不使用下划线 实例名+模块名:(1)小写格式 (2)下划线分隔单词 2.文档字符串 三引号:“““ ””” 每个类定义后面需要包含一个文档字符串,描述类的 ...

  4. bzoj 2243

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 8800  Solved: 3305[Submit][Status ...

  5. Java入门:注册模块的实现

    1.主活动图 用户选择注册选项,进入注册界面,开始输入注册信息,到最后完成注册.具体的活动图如下: 以上活动图中,矩形框里的操作不是在一个类里面实现的,而是通过Form类和UserService类来实 ...

  6. Docker应用一:docker介绍

    Docker介绍与安装 一.Docker与传统虚拟化区别 直接看下图:                  传统虚拟化实现架构                                   doc ...

  7. CF916E Jamie and Tree

    CF916E Jamie and Tree 题意翻译 有一棵n个节点的有根树,标号为1-n,你需要维护以下三种操作 1.给定一个点v,将整颗树的根变为v 2.给定两个点u, v,将lca(u, v)所 ...

  8. java基础-Arrays类常用方法介绍

    java基础-Arrays类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Array类的概念 此类包含用来操作数组(比如排序和搜索)的各种方法.需要注意,如果指定 ...

  9. UIScrollView增加回弹效果

    项目中经常要增加上下滑动回弹的效果: self.scrollView.alwaysBounceVertical = YES;

  10. poj 1961 Period

    Period http://poj.org/problem?id=1961 Time Limit: 3000MS   Memory Limit: 30000K       Description Fo ...