http://www.lydsy.com/JudgeOnline/problem.php?id=2229

最小割树介绍:http://blog.csdn.net/jyxjyx27/article/details/42750833

http://blog.csdn.net/miaomiao_ymxl/article/details/54931876

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 200
#define M 7000
const int inf=2e9; int n; int tot;
int front[N],nxt[M<<],to[M<<],val[M<<],from[M<<];
int lev[N],num[N];
int path[N];
int cur[N]; int src,decc; int a[N],tmp[N];
bool use[N]; int dis[N][N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; from[tot]=u; val[tot]=w;
//to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; from[tot]=v; val[tot]=0;
} bool bfs()
{
queue<int>q;
for(int i=;i<=n;++i) lev[i]=n;
q.push(decc);
lev[decc]=;
int now,t;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=front[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]==n && val[i^])
{
lev[t]=lev[now]+;
q.push(t);
}
}
}
return lev[src]!=n;
} int augment()
{
int now=decc,flow=inf;
int i;
while(now!=src)
{
i=path[now];
flow=min(flow,val[i]);
now=from[i];
}
now=decc;
while(now!=src)
{
i=path[now];
val[i]-=flow;
val[i^]+=flow;
now=from[i];
}
return flow;
} int isap()
{
int flow=;
if(!bfs()) return ;
memset(num,,sizeof(num));
for(int i=;i<=n;++i) num[lev[i]]++,cur[i]=front[i];
int now=src,t;
while(lev[src]<n)
{
if(now==decc)
{
flow+=augment();
now=src;
}
bool advanced=false;
for(int i=cur[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]==lev[now]- && val[i])
{
advanced=true;
path[t]=i;
cur[now]=i;
now=t;
break;
}
}
if(!advanced)
{
int mi=n;
for(int i=front[now];i;i=nxt[i])
if(val[i]) mi=min(mi,lev[to[i]]);
if(!--num[lev[now]]) break;
num[lev[now]=mi+]++;
cur[now]=front[now];
if(now!=src) now=from[path[now]];
}
}
return flow;
} void dfs(int x)
{
use[x]=true;
for(int i=front[x];i;i=nxt[i])
if(!use[to[i]] && val[i]) dfs(to[i]);
} void solve(int l,int r)
{
if(l>=r) return;
src=a[l]; decc=a[r];
for(int i=;i<=tot;i+=) val[i]=val[i+]=val[i]+val[i+]>>;
int flow=isap();
// printf("%d %d %d\n",l,r,flow);
memset(use,false,sizeof(use));
dfs(src);
for(int i=;i<=n;++i)
if(use[i])
for(int j=;j<=n;++j)
if(!use[j])
dis[i][j]=dis[j][i]=min(dis[i][j],flow);
int i=l,j=r;
for(int k=l;k<=r;++k)
if(use[a[k]]) tmp[i++]=a[k];
else tmp[j--]=a[k];
for(int k=l;k<=r;++k) a[k]=tmp[k];
solve(l,i-);
solve(j+,r);
} int main()
{
// freopen("mincuto.in","r",stdin);
// freopen("mincuto.out","w",stdout);
int T;
read(T);
int m,q;
int u,v,w,x;
int ans;
while(T--)
{
tot=;
memset(front,,sizeof(front));
memset(dis,,sizeof(dis));
read(n); read(m);
for(int i=;i<=n;++i) a[i]=i;
while(m--)
{
read(u); read(v); read(w);
add(u,v,w);
add(v,u,w);
}
solve(,n);
read(q);
while(q--)
{
ans=;
read(x);
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(dis[i][j]<=x) ans++;
cout<<ans<<'\n';
}
cout<<'\n';
}
return ;
}

2229: [Zjoi2011]最小割

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 2429  Solved: 863
[Submit][Status][Discuss]

Description

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。

Input

输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。

Output

对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。

两组测试数据之间用空行隔开。

Sample Input

1
5 0
1
0

Sample Output

10

【数据范围】
对于100%的数据 T<=10,n<=150,m<=3000,q<=30,x在32位有符号整数类型范围内。
图中两个点之间可能有多条边

bzoj千题计划139:bzoj2229: [Zjoi2011]最小割的更多相关文章

  1. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  2. bzoj2229: [Zjoi2011]最小割(最小割树)

    传送门 这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里) 有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了 //minamoto #includ ...

  3. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  4. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  5. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

  6. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  7. bzoj千题计划141:bzoj3532: [Sdoi2014]Lis

    http://www.lydsy.com/JudgeOnline/problem.php?id=3532 如果没有字典序的限制,那么DP拆点最小割即可 加上字典序的限制: 按c从小到大枚举最小割边集中 ...

  8. bzoj千题计划129:bzoj2007: [Noi2010]海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 1.所有点的高度一定在0~1之间, 如果有一个点的高度超过了1,那么必定会有人先上坡,再下坡, ...

  9. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

随机推荐

  1. 软工实践l练习一一利用github托管项目

    这次实践的主题是在windows环境下将项目通过git将项目托管到github上.通过实践,基本掌握一些git命令的使用,在github上注册账号并学会创建repositly和organization ...

  2. BETA-1

    前言 我们居然又冲刺了·一 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 发现之前的代码居然已经有了陌生感,默默地复习一遍并做注释 阅读关于基于视频的车 ...

  3. 守护线程(Daemon Thread)

    在Java中有两类线程:用户线程 (User Thread).守护线程 (Daemon Thread). 所谓守护 线程,是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称 ...

  4. 3、第一个Python程序

    现在,了解了如何启动和退出Python的交互式环境,我们就可以正式开始编写Python代码了. 在写代码之前,请千万不要用“复制”-“粘贴”把代码从页面粘贴到你自己的电脑上.写程序也讲究一个感觉,你需 ...

  5. 6/6 sprint2 看板和燃尽图的更新

  6. [转帖] 知乎: 为什么品牌机器里面的VTX都是关闭的..

    为何品牌机BIOS中的硬件虚拟化都是默认关闭的?   知乎老狼原创: https://www.zhihu.com/question/40381254/answer/499617881 谢邀.先说结论, ...

  7. httpstat的简单使用

    httpstat 应该是一个 python 封装后的 curl 工具能够展现 一些客户端连接网站的时间消耗,最近在看tls 感觉挺有用处的 简单学习一下 1. centos7 安装python 和 p ...

  8. dbgrid控件如何能在左边显示行号?

    procedure TMSWageEdit.aqyMSWageEditCalcFields(DataSet: TDataSet);begin  inherited;  with DataSet do  ...

  9. springboot学习笔记-3 整合redis&mongodb

    一.整合redis 1.1 建立实体类 @Entity @Table(name="user") public class User implements Serializable ...

  10. PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

    介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较 ...