POJ 3686 The Windy's (最小费用流或最佳完全匹配)
题意:有n个订单m个车间,每个车间均可以单独完成任何一个订单。每个车间完成不同订单的时间是不同的。不会出现两个车间完成同一个订单的情况。给出每个订单在某个车间完成所用的时间。问订单完成的平均时间是多少。
析:这个题可以用最小费用流或者最佳完全匹配来做,因为只有车间和订单,满足二分图,主要是在建图。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 50 * 50 + 100 + 10;
const int maxm = 1e5 + 10;
const int mod = 50007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Edge{
int from, to, cap, flow, cost;
}; struct MinCostMaxFlow{
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n){
this-> n = n;
for(int i = 0; i < n; ++i) G[i].cl;
edges.cl;
} void addEdge(int from, int to, int cap, int cost){
edges.pb((Edge){from, to, cap, 0, cost});
edges.pb((Edge){to, from, 0, 0, -cost});
m = edges.sz;
G[from].pb(m - 2);
G[to].pb(m - 1);
} bool bellman(int &flow, int &cost){
ms(d, INF); ms(inq, 0);
inq[s] = 1; d[s] = 0; a[s] = INF; p[s] = 0;
queue<int> q;
q.push(s); while(!q.empty()){
int u = q.front(); q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].sz; ++i){
Edge &e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]){ q.push(e.to); inq[e.to] = 1; }
}
}
}
if(d[t] == INF) return false;
cost += a[t] * d[t];
flow += a[t];
int u = t;
while(u != s){
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
} int mincostmaxflow(int s, int t){
this->s = s; this->t = t;
int flow = 0, cost = 0;
while(bellman(flow, cost));
return cost;
}
};
MinCostMaxFlow mcmf; int a[55][55]; int main(){
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
int s = 0, t = n * m + n + 2;
mcmf.init(t + 10);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
scanf("%d", a[i] + j);
for(int i = 1; i <= n; ++i){
mcmf.addEdge(s, i, 1, 0);
for(int j = 1; j <= m; ++j)
for(int k = 1; k <= n; ++k){
mcmf.addEdge(i, j * n + k, 1, k * a[i][j]);
if(i == 1) mcmf.addEdge(j * n + k, t, 1, 0);
}
}
printf("%f\n", mcmf.mincostmaxflow(s, t) * 1. / n);
}
return 0;
}
POJ 3686 The Windy's (最小费用流或最佳完全匹配)的更多相关文章
- [ACM] POJ 3686 The Windy's (二分图最小权匹配,KM算法,特殊建图)
The Windy's Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4158 Accepted: 1777 Descr ...
- POJ 3686 The Windy's(思维+费用流好题)
The Windy's Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5362 Accepted: 2249 Descr ...
- poj 3686 The Windy's
http://poj.org/problem?id=3686 #include <cstdio> #include <cstring> #include <algorit ...
- POJ 3686 The Windy's (费用流)
[题目链接] http://poj.org/problem?id=3686 [题目大意] 每个工厂对于每种玩具的加工时间都是不同的, 并且在加工完一种玩具之后才能加工另一种,现在求加工完每种玩具的平均 ...
- POJ 3686 The Windy's 最小费用最大流
每个工厂拆成N个工厂,费用分别为1~N倍原费用. //#pragma comment(linker, "/STACK:1024000000,1024000000") #includ ...
- poj - 3686 The Windy's (KM算法)
题意:n个订单和m个生产车间,每个订单在不同的车间生产所需要的时间不一样,并且每个订单只能在同一个车间中完成,直到这个车间完成这个订单就可以生产下一个订单.现在需要求完成n个订单的平均时间最少是多少. ...
- POJ 2195 Going Home【最小费用流 二分图最优匹配】
题目大意:一个n*m的地图,上面有一些人man(m)和数量相等的house(H) 图上的距离为曼哈顿距离 问所有人住进一所房子(当然一个人住一间咯)距离之和最短是多少? 思路:一个人一间房,明显是二分 ...
- UVa 1349 Optimal Bus Route Design (最佳完美匹配)
题意:给定一个有向图,让你找出若干个图,使得每个点恰好属于一个圈,并且总的权和最小. 析:每个点都有唯一的一个圈,也就是说每一点都有唯一的后继,那么我们就可以转换成求一个图的最小权的最佳完全匹配,可以 ...
- 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
随机推荐
- jsfl 改变舞台宽高
fl.getDocumentDOM().height= 680; fl.getDocumentDOM().width= 550;
- 16 python xml模块
1.基本概念 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单. 不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀. 至今很多传统公司如金 ...
- UI5-文档-4.11-Pages and Panels
在完成了应用程序结构的所有工作之后,是时候改进我们的应用程序的外观了.在这一步中,您还将了解控件聚合. Preview A panel is now displaying the controls f ...
- Django之 Model Field Options
以下这些选项都是可选择的,非固定要求. 1)null,注意在CharField或者TextField里避免使用null,因为其存储的值是空字符串而不是NULL 2)blank该字段是否可以为空.如果为 ...
- CAAnimation临时取消动画,永久取消动画
//临时取消动画 [CATransaction begin]; [CATransaction setDisableActions:YES]; mMyLayer.strokeEnd = 0; [CATr ...
- 解决Linux命令行为什么变成-bash-3.2$
在Linux服务器上创建了一个新用户probe,是这样创建的: [root@localhost home]# groupadd -g 501 probe [root@localhost home]# ...
- SSM总结
1 报错: cvc-complex-type.2.4.a: Invalid content was found starting with element 'async-supported'. ...
- Openning SharePoint - 80 website gives HTTP 404 Error, The webpage cannot be found ! on SharePoint 2013
ask: I tried to open the SharePoint - 80 throw Browse in IIS, but I get HTTP 404 Error (The webpage ...
- Memtester——Linux内存测试工具
一.Memtester简单介绍 Memtester主要是捕获内存错误和一直处于很高或者很低的坏位, 其测试的主要项目有随机值,异或比较,减法,乘法,除法,与或运算等等. 通过给定测试内存的大小和次数, ...
- VirtualBox中的虚拟机在Ubuntu 下无法启动之问题解决
我通过重新安装box解决的.发现,box安装,直接apt install有可能会出现虚拟机无法启动的问题. 一.添加VirtualBox的源并安装5.1版本virtualbox官网:https://w ...