LCA/在线(倍增)离线(Tarjan)
概念
祖先
有根树中,一个节点到根的路径上的所有节点被视为这个点的祖先,包括根和它本身
公共祖先
对于点a和b,如果c既是a的祖先又是b的祖先,那么c是a和b的公共祖先
##深度
子节点的深度=父节点深度+1,一般我们定根的深度为1
最近公共祖先
树上两个节点的所有公共祖先中,深度最大的那个称为两个点的最近公共祖先(LCA)
方法1:暴力爬山法
很明显,这个方法是很想爬山,我们可以先然两个节点中,深度大的依着父亲爬到两节点深度相同,然后,两个节点一起爬,最后,爬到了同一个节点,这,就是ans;
很明显,这个方法有几个缺陷,时间为O(n),并且,还要用bfs算深度
方法2:倍增
求公共祖先
在前面爬山法进行改进,在爬山的过程中,其实有些地方可以一蹦千尺高,但却一步一步地走,大大的浪费了时间,于是,我们运用倍增
众所周知,任意一个数是可用二进制来表示,如果,我们用一个二进制来表示两个节点的深度差,那不是就把时间化为O(log2n)
设一个数组dp[i][j]从i这个节点往上走2j步,那么,dp[i][j-1]j就是再往根的方向走2(j-1)步,如果再走2(j-1)步,就相当于走了2j,所以,dp[i][j]=dp[dp[i][j-1]][j-1]
其中,dp[i][0]=fa[i];
那如何来求dp这个数组呢
我们可以在bfs求树上每个点深度的时候,顺便预处理dp数组
void bfs()
{
queue<int>q;
d[root]=1;
q.push(root);
while(q.size())
{
int temp=q.front();
q.pop();
for(int i=0;i<g[temp].size();i++)
{
int v=g[temp][i];
if(d[v])
{
continue;
}
d[v]=d[temp]+1;
dp[v][0]=temp;
for(int j=1;j<=Maxstep;j++)
{
dp[v][j]=dp[dp[v][j-1]][j-1];
}
q.push(v);
}
}
}
LCA就是在爬山的基础上,将一步一步的枚举,改为,从大到小走2j
int LCA(int a, int b) {
if (d[a] > d[b]) {
swap(a, b);
}
for (int i = Maxstep; i >= 0; i--) {
if (d[dp[b][i]] >= d[a]) {
b = dp[b][i];
}
}
if (a == b) {
return a;
}
for (int i = Maxstep; i >= 0; i--) {
if (dp[b][i] != dp[a][i]) {
a = dp[a][i];
b = dp[b][i];
}
}
return dp[a][0];
}
求俩点的距离
可以先求出两点的LCA,然后,这两点的距离,就是公共祖先到A的距离+公共祖先到B的距离,而距离,可以和算深度一样,算到根节点的距离
int dist(int x, int y) { return d[x] + d[y] - d[LCA(x, y)] * 2; }
Tarjan
离线的求LCA的方法
先dfs,然后,标记,用并查集的路径压缩记录这个节点,最近的,没有回溯的节点,如果,询问的两个节点中有被访问的,那就可以将这个结点并查集的祖先放进去,正因为这样,所以,所有的,都需要先放进去,在dfs
void Trajan(int x) {
vis[x] = 1;
for (int i = 0; i < g[x].size(); i++) {
int v = g[x][i];
if (vis[v]) {
continue;
}
Trajan(v);
fa[v] = x;
}
for (int i = 0; i < q[x].size(); i++) {
int ID = q[x][i].id;
if (vis[q[x][i].v] == 1) {
ans[ID] = find(q[x][i].v);
}
}
}
LCA/在线(倍增)离线(Tarjan)的更多相关文章
- poj 1330 LCA (倍增+离线Tarjan)
/* 先来个倍增 */ #include<iostream> #include<cstring> #include<cstdio> #define maxn 100 ...
- hdu 2586 How far away?(LCA模板题+离线tarjan算法)
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K ...
- LCA 在线倍增法 求最近公共祖先
第一步:建树 这个就不说了 第二部:分为两步 分别是深度预处理和祖先DP预处理 DP预处理: int i,j; ;(<<j)<n;j++) ;i<n;++i) ) fa[i ...
- [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)
题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...
- 近期公共祖先(LCA)——离线Tarjan算法+并查集优化
一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...
- LCA在线算法ST算法
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ ...
- LCA在线算法(hdu2586)
hdu2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- LCA的倍增算法
LCA,即树上两点之间的公共祖先,求这样一个公共祖先有很多种方法: 暴力向上:O(n) 每次将深度大的点往上移动,直至二者相遇 树剖:O(logn) 在O(2n)预处理重链之后,每次就将深度大的沿重链 ...
随机推荐
- java标识接口
标识接口是没有任何方法和属性的接口,标识接口不对实现类有任何语义上的要求,仅仅表明它的实现类属于一个特定的类型.它非常类似于Web 2.0中的TAG的概念,Java使用它标识某一类对象.主要有两个用途 ...
- LVS nat模型+dr模型
nat模型 在 rs1 和 rs2 安装httpd 并配置测试页,启动 [root@rs1 ~]# yum install httpd -y[root@rs1 ~]# echo "thi ...
- 【Linux】【Shell】【Basic】条件测试和变量
bash脚本编程 脚本文件格式: 第一行,顶格:#!/bin/bash 注释信息:# 代码注释: 缩进,适度添加空白行: ...
- web前段canvasjs图表制作一
关于web图表制作的方法有很多种,大家可以去网上这里我就介绍我经常使用的一种方法CanvasJS,这也是一款非常容易掌握并且好用的一种方法. 首先可以去网上下载canvasjs.js插件.下载路径:h ...
- 【力扣】146. LRU缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果关键字 (key) ...
- KrakenD url匹配通配符 url_pattern wildcard
KrakenD是一个高性能Api网关, api转发的推荐做法是每个api一个配置项,也就是一个endpoint,其开发者认为api网关和纯粹的L7路由不一样(文章链接). 因此社区版并没有提供通配符 ...
- 转:select、poll、epoll之间的区别总结[整理]
转:select.poll.epoll之间的区别总结[整理] select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就 ...
- setsockopt()用法及参数详解
setsockopt()用法(参数详细说明) int setsockopt(SOCKET s,int level,int optname,const char* optval,int optlen); ...
- Spring 5| 轻量级的开源JavaEE框架
一.Spring框架的概述 1.Spring是轻量级的开源的JavaEE框架 2.Spring可以解决企业应用开发的复杂性 3.Spring有两个核心的部分:IOC(控制反转)和AOP(面向切面编程) ...
- LuoguP2382 化学分子式 题解
Description 你的任务是编写一个能处理在虚拟的化学里分子式的程序,具体地说,给定你所有原子的相对原子质量,求出所有询问的分子的相对分子质量,或者报告不存在. 数据范围:原子质量 \(\leq ...