积分图(二) - Block - Match(统计)滤波器
积分图
是 [Crow(1984 年)] 提出的用于提高多尺度透视投影中纹理的渲染速度的一种技术. 积分图最流行的应用是 快速归一化互相关
(fast normalized cross-correlation), Viola-Jones 目标检测框架, SURF 变换( Speeded Up Robust Feature).
本章介绍的是积分图在基本的块统计滤波器
中的应用.
均值
随机变量 \(X=\{x_1,\dots,x_n\}\) 的离散分布的均值 \(\mu(X)\) 定义为:
\begin{aligned}
\mu=\sum_{i=1}^np_ix_i
\end{aligned}
\end{equation}
\]
如果 X 是一个矩形块中的像素值, 并且每个像素值的概率相同 \(p_i=\frac{1}{n}\), 那么:
\begin{aligned}\mu=\frac{1}{n}\sum_{i=1}^nx_i
\end{aligned}
\end{equation}
\]
这个求和可以通过 \(I(\vec{x})\) 的积分图求解. 对于一个二维图像, 在单个 loop 中, 积分图计算会平均使用 1 次乘积和 3 次求和, 每个像素数据访问需要 5 次求和. 使用积分图, 任意矩形块的像素值的均值都可以在常数时间内计算, 即计算时需要 1 次乘积和 3 次求和, 数据访问需要 2 次乘积和 6 次求和.
方差
随机变量 \(X=\{x_1,\dots,x_n\}\) 的离散分布的方差 \(\text{Var}(X)\) 定义为:
\begin{aligned}
\text{Var}(X) = \sum_{i=1}^np_i(x_i-\mu)^2 \quad\text{with}\quad \mu=\sum_{i=1}^np_ix_i
\end{aligned}
\end{equation}
\]
如果 X 是一个矩形块中的像素值, 并且每个像素值的概率相同 \(p_i=\frac{1}{n}\), 那么:
\begin{aligned}
\text{Var}(X) = \frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2 \quad\text{and}\quad \mu=\frac{1}{n}\sum_{i=1}^nx_i
\end{aligned}
\end{equation}
\]
展开公式可得:
\begin{aligned}
\text{Var}(x) &= \frac{1}{n}\sum_{i=1}^n\left(x_i^2-2x_i\mu+\mu^2\right) \\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \frac{1}{n}\sum_{i=1}^n2x_i\mu + \mu^2 \\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \frac{1}{n}\sum_{i=1}^n2x_i\mu + \frac{1}{n^2}\left(\sum_{i=1}^nx_i\right)^2\\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \frac{2\mu}{n}\sum_{i=1}^nx_i + \frac{1}{n^2}\left(\sum_{i=1}^nx_i\right)^2\\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \frac{2}{n^2}\left(\sum_{i=1}^nx_i\right)^2 + \frac{1}{n^2}\left(\sum_{i=1}^nx_i\right)^2\\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \frac{1}{n^2}\left(\sum_{i=1}^nx_i\right)^2\\
&= \frac{1}{n}\sum_{i=1}^nx_i^2 - \left(\frac{1}{n}\sum_{i=1}^nx_i\right)^2\\
&= \frac{1}{n}\left(\sum_{i=1}^nx_i^2 - \frac{1}{n}\left(\sum_{i=1}^nx_i\right)^2\right)\\
\end{aligned}
\end{equation}
\]
每一个求和都可以使用两个积分图: \(I(\vec{x})\) 和 \(I(\vec{x})^2\). 对于一个二维图像, 在单个 loop 中, 积分图计算会平均使用 1 次乘积和 6 次求和, 每个像素数据访问需要 5 次求和. 使用积分图, 任意矩形块的像素值的方差都可以在常数时间内计算, 即计算时需要 3 次乘积和 9 次求和, 数据访问需要 2 次乘积和 6 次求和.
使用积分图进行块匹配(Block Matching)
考虑这样一种场景: 两张部分重叠的图像区域 X 和 Y 可能在图像亮度和对比度上有所不同, 使用简单的估计器 (simple estimator), 比如 Mean Square Error (MSE) 并不能测量两个图像区域的相似度, 因为 MSE 对于线性变换不是固定不变的.
此时, 我们需要一种线性相关的测量方法. 皮尔森乘积矩相关系数 (PMCC, Pearson Product-Moment Correlation Coefficient) \(\rho_{X,Y}\) 就是一种线性相关的测量方法:
\begin{aligned}
\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}
\end{aligned}
\end{equation}
\]
其中, 对 X 进行 n~elements 的有限采样, 那么每一个样本的相关系数 \(r_{XY}\) 为:
\begin{aligned}
r_{XY} = \frac{\sum_{i=1}^n(x_i-\mu_X)(y_i-\mu_Y)}{\sqrt{\sum_{i=1}^n(x_i-\mu_X)^2}\sqrt{\sum_{i=1}^n(y_i-\mu_Y)^2}}\quad\text{其中,}\quad\mu_X = \frac{1}{n}\sum_{i=1}^nx_i
\end{aligned}
\end{equation}
\]
可以将公式的分子变形为:
\begin{aligned}
\sum_{i=1}^n(x_i-\mu_X)(y_i-\mu_Y) &= \sum_{i=1}^nx_iy_i-\sum_{i=1}^nx_i\mu_Y-\sum_{i=1}^ny_i\mu_X+\sum_{i=1}^n\mu_X\mu_Y \\
&= \sum_{i=1}^nx_iy_i-\mu_Y\sum_{i=1}^nx_i-\mu_X\sum_{i=1}^ny_i+n\mu_X\mu_Y\\
&= \sum_{i=1}^nx_iy_i-\frac{1}{n}\sum_{i=1}^ny_i\sum_{i=1}^nx_i
\end{aligned}
\end{equation}
\]
对于整个分式乘以 \(\frac{n}{n}\):
\begin{aligned}
r_{XY} &= \frac{\sum_{i=1}^nx_iy_i-\frac{1}{n}\sum_{i=1}^ny_i\sum_{i=1}^nx_i}{\sqrt{\sum_{i=1}^n(x_i-\mu_X)^2}\sqrt{\sum_{i=1}^n(y_i-\mu_Y)^2}} \\
&= \frac{n\sum_{i=1}^nx_iy_i-\sum_{i=1}^ny_i\sum_{i=1}^nx_i}{n\sqrt{\sum_{i=1}^n(x_i-\mu_X)^2}\sqrt{\sum_{i=1}^n(y_i-\mu_Y)^2}} \\
&= \frac{n\sum_{i=1}^nx_iy_i-\sum_{i=1}^ny_i\sum_{i=1}^nx_i}{\sqrt{n\sum_{i=1}^n(x_i-\mu_X)^2}\sqrt{n\sum_{i=1}^n(y_i-\mu_Y)^2}}
\end{aligned}
\end{equation}
\]
根据上面的推导, 可得:
\begin{aligned}
n\sum_{i=1}^n(x_i-\mu_X)^2 &= n\sum_{i=1}^n(x_i^2-2x_i\mu_X+\mu_X^2) \\
&= n\sum_{i=1}^nx_i^2 - 2n\mu_X\sum_{i=1}^nx_i + \left(\sum_{i=1}^nx_i\right)^2\\
&= n\sum_{i=1}^nx_i^2 - 2\left(\sum_{i=1}^nx_i\right)^2 + \left(\sum_{i=1}^nx_i\right)^2\\
&= n\sum_{i=1}^nx_i^2 - \left(\sum_{i=1}^nx_i\right)^2
\end{aligned}
\end{equation}
\]
因此:
\begin{aligned}
r_{XY} = \frac{n\sum_{i=1}^nx_iy_i - \sum_{i=1}^nx_i\sum_{i=1}^ny_i}{\sqrt{n\sum_{i=1}^nx_i^2 - \left(\sum_{i=1}^nx_i\right)^2}\sqrt{n\sum_{i=1}^ny_i^2 - \left(\sum_{i=1}^ny_i\right)^2}}
\end{aligned}
\end{equation}
\]
由公式可以看出, 我们计算图像上固定偏移处的每个 block 的 \(r_{XY}\) 时, 都只需要计算 5 个 summed-area tables, 即 \(x_iy_i, x_i, y_i, x_i^2, y_i^2\), 因此算法复杂度是常数.
在一些求极值的问题中, 我们可以估计出 \(r_{XY}^2\) 和 \(r_{XY}\) 的符号(即分子的符号)即可. 这样就可以避免计算开根号来提高效率.
\begin{aligned}
r_{XY}^2 = \frac{a^2}{\left(n\sum_{i=1}^nx_i^2 - \left(\sum_{i=1}^nx_i\right)^2\right)\left(n\sum_{i=1}^ny_i^2 - \left(\sum_{i=1}^ny_i\right)^2\right)}
\end{aligned}
\end{equation}
\]
with
\begin{aligned}
a = n\sum_{i=1}^nx_iy_i - \sum_{i=1}^nx_i\sum_{i=1}^ny_i\quad\text{and}\quad{}sgn(r_{XY}) = sgn(a)
\end{aligned}
\end{equation}
\]
参考资料
[1]: Integral Image Filter
[2]: Crow, Franklin C. (1984). "Summed-area tables for texture mapping". Proceedings of the 11th annual conference on Computer graphics and interactive techniques: 207–212, ACM. doi:10.1145/800031.808600.
[3]: Lewis, J. P. (1995). "Fast template matching". Vision Interface 95: 120–123, Canadian Image Processing and Pattern Recognition Society.
[4]: Viola, Paul & Jones, Michael J. (2004), "Robust Real-Time Face Detection", International Journal of Computer Vision 57 (2): 137–154
[5]: Bay, Herbert; Ess, Andreas & Tuytelaars, Tinne et al. (2008), "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU) 110 (3): 346–359
积分图(二) - Block - Match(统计)滤波器的更多相关文章
- 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...
- 【AdaBoost算法】积分图代码实现
一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h ...
- 第十二章——SQLServer统计信息(4)——在过滤索引上的统计信息
原文:第十二章--SQLServer统计信息(4)--在过滤索引上的统计信息 前言: 从2008开始,引入了一个增强非聚集索引的新功能--过滤索引(filter index),可以使用带有where条 ...
- 积分图实现均值滤波的CUDA代码
没想到我2010年买的笔记本显卡GT330M 竟然还能跑CUDA,果断小试了一把,环境为CUDA6.5+VS2012,写了一个积分图实现均值滤波.类似于OpenCV的blur()函数. 使用lena. ...
- 目标检测之积分图---integral image 积分图2
前面在图像处理一栏中涉及到boxfilter 的时候,简单介绍过积分图,就是每个像素点是左边和上边的累加和,这样的话可以方便均值和方差,以及直方图统计的相关运算,这里再次结合网络资源重新单独对积分图做 ...
- 第十二章——SQLServer统计信息(3)——发现过期统计信息并处理
原文:第十二章--SQLServer统计信息(3)--发现过期统计信息并处理 前言: 统计信息是关于谓词中的数据分布的主要信息源,如果不知道具体的数据分布,优化器不能获得预估的数据集,从而不能统计需要 ...
- 第十二章——SQLServer统计信息(1)——创建和更新统计信息
原文:第十二章--SQLServer统计信息(1)--创建和更新统计信息 简介: 查询的统计信息: 目前为止,已经介绍了选择索引.维护索引.如果有合适的索引并实时更新统计信息,那么优化器会选择有用的索 ...
- 第十二章——SQLServer统计信息(2)——非索引键上统计信息的影响
原文:第十二章--SQLServer统计信息(2)--非索引键上统计信息的影响 前言: 索引对性能方面总是扮演着一个重要的角色,实际上,查询优化器首先检查谓词上的统计信息,然后才决定用什么索引.一般情 ...
- Matlab 快速多通道积分图计算函数
所谓快速多通道积分图计算,其实就是 cumsum2D. 我写了一个比较快的版本(比 VLFeat 的快),用 mex 编译一下就能用了. 代码 #include <string.h> #i ...
随机推荐
- 线程池之 newSingleThreadExecutor 介绍
package com.aaa.threaddemo; import java.text.DateFormatSymbols; import java.util.concurrent.Executor ...
- ApacheCN 编程/大数据/数据科学/人工智能学习资源 2019.12
公告 我们的所有非技术内容和活动,从现在开始会使用 iBooker 这个名字. "开源互助联盟"已终止,我们对此表示抱歉和遗憾.除非特地邀请,我们不再推广他人的任何项目. 公众号自 ...
- 分布式缓存——Redis
一.Redis介绍 Redis是一个开源的使用C语言编写.开源.支持网络.可基于内存亦可持久化的日志型.高性能的key-value数据库,并提供多种语言的API.它通常被称为数据结构服务器,因为值(v ...
- 布局TabBar
布局TabBar中的items Tabbar中应该有5个Item 主页/消息/发布按钮/发现/我 布局TabBar中的Items可以通过下面的方式 通过自定义TabBar的方式 多添加一个控制器,让中 ...
- LDAP概念和原理介绍 (转)
相信对于许多的朋友来说,可能听说过LDAP,但是实际中对LDAP的了解和具体的原理可能还比较模糊,今天就从"什么是LDAP"."LDAP的主要产品"." ...
- Redis的配置文件redis.conf详解
Redis的配置文件位于redis的安装目录下,一般不要直接操作出厂设置的配置文件,需要对其进行备份.# Redis的配置文件样例: # Redis configuration file exampl ...
- 修改注册表使win server 2012R2开机进入桌面而不是开始界面
首先,使用WIN+R快捷键打开运行命令,使用命令打开注册表编辑器 然后,进入注册表之后,我们一次定位到HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ ...
- 关于final关键字
final修饰基本数据类型时 修饰的变量值不可变 final修饰引用数据类型时 修饰的变量地址不可变 值可变 final修饰一个类中的方法时 不可被子类重写 final修饰一个类时 不可被其他类继承 ...
- Arch Linux遇到的坑(下)
明天就要开学,终于赶忙又熟悉了新环境的用法,现在已经基本满足了日常需求,再记录一些坑-. 电脑没有声音 因为上次离奇的自己好了,我就没有再管了,但是后来使用chrome的时候还是没有声音,我就用了图形 ...
- Linux基础入门笔记
今天带来Linux入门的一些基础的笔记,科班出身的同学们,Linux已经成为了必修课了,下面我带来关于Linux的相关入门知识以及Linux简单的介绍! Linux内核最初只是由芬兰人林纳斯·托瓦兹( ...