QwQ太懒了,题目直接复制uoj的了

QwQ这个题可以说是十分玄学的一道题了

首先可以暴搜,就是\(dfs\)然后模拟每个过程是哪个柱子向哪个柱子移动

不多解释了,不过实现起来还是有一点点难度的

直接上代码吧

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 110;
const int mod = 998244353; int a[maxn][maxn];
int bel[maxn];
int top[maxn];
int st[maxn];
int ed[maxn];
int num;
int n,m;
int ans; void to(int i,int j)
{
int x = a[i][top[i]];
if (ed[x]==i) num--;
a[i][top[i]--]=0;
a[j][++top[j]]=x;
if (ed[x]==j) num++;
} void dfs(int tmp)
{
//for (int i=1;i<=3;i++)
//{
// cout<<"第"<<i<<"个柱子: " ;
// for (int j=1;j<=top[i];j++)
// {
// cout<<a[i][j]<<" ";
// }
// cout<<endl;
//}
//cout<<"---------------------"<<endl;
if (num==n){ans++;if (ans>mod) ans-=mod;};
if (tmp==m+1) return;
for (int i=1;i<=3;i++)
{
for (int j=1;j<=3;j++)
{
if (i==j) continue;
if (top[i]<=0) continue;
if (a[i][top[i]]>a[j][top[j]] && top[j]>0) continue;
to(i,j);
dfs(tmp+1);
to(j,i);
}
}
} int main()
{
scanf("%d%d",&n,&m);
if (m>14) {
cout<<292996445%mod<<endl;
return 0;
}
for (int i=1;i<=n;i++) st[i]=read();
for (int i=1;i<=n;i++) ed[i]=read();
for (int i=1;i<=n;i++) if (st[i]==ed[i]) num++;
for (int i=n;i>=1;i--) a[st[i]][++top[st[i]]]=i;
//cout<<num<<endl;
dfs(1);
cout<<ans;
return 0;
}

经过仔(guan)细(kan)思(ti)考(jie)不难发现,这个题,有用的状态只有\(3^n\)种,我们可以令\(f[i][j]\)表示当前的操作步数是\(i\),各个盘子的状态是\(j\)的合法移动方案数

然后记忆化一下!竟然过了!!!

具体的复杂度分析在这

不过这个题还是有很多记得学习的地方!

1.模拟移动的过程只需要考虑柱子,而不是盘子

2.记录状态的时候可以用vector+map来实现 很方便

上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int mod = 998244353;
const int maxn = 110; map<vector<int>,int> f[maxn],g[maxn];
int a[maxn],b[maxn];
int n,m;
vector<int> v,vv;
int ans=0; int dfs(vector<int> x,int num)
{
int cnt=0,top[10];
if (num<0) return 0;
memset(top,127/3,sizeof(top));
if (g[num][x]) return f[num][x];
g[num][x]=1;
x.resize(n);
// for (int i=n-1;i>=0;i--) cout<<x[i]<<endl<<endl;
for (int i=n-1;i>=0;i--) top[x[i]]=i;
for (int i=1;i<=3;i++)
for (int j=1;j<=3;j++)
{
if (i==j) continue;
if (top[i]<top[j])
{
x[top[i]]=j;
cnt=(cnt+dfs(x,num-1))%mod;
x[top[i]]=i;
}
}
f[num][x]=cnt;
return f[num][x];
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) a[i]=read(),v.push_back(a[i]);
for (int i=1;i<=n;i++) b[i]=read();
f[0][v]=1;
g[0][v]=1;
v.clear();
for (int i=1;i<=n;i++) vv.push_back(b[i]);
for (int i=0;i<=m;i++)
{
ans=(ans+dfs(vv,i))%mod;
}
cout<<ans;
return 0;
}

uoj167 元旦老人与汉诺塔(记忆化搜索)的更多相关文章

  1. [UOJ #167]【UR #11】元旦老人与汉诺塔

    题目大意:给你一个有$n$个盘子的汉诺塔状态$S$,问有多少种不同的操作方法,使得可以在$m$步以内到达状态$T$.$n,m\leqslant100$ 题解:首先可以知道的是,一个状态最多可以转移到其 ...

  2. UR11 A.元旦老人与汉诺塔

    题目:http://uoj.ac/contest/23/problem/167 如果我们拿个map来存状态的话.设当前状态是v,下一个状态是s.有f[i+1][s]+=f[i][v]. 初始f[0][ ...

  3. 奇妙的算法【4】-汉诺塔&哈夫曼编码

    1,汉诺塔问题[还是看了源码才记起来的,记忆逐渐清晰] 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着6 ...

  4. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  5. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  6. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  7. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  8. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  9. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

随机推荐

  1. Eclipse中安装配置Gradle

    Gradle是以Groovy语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具. gradle对多工程的构建支持很出色,工程依赖是gradle的第一功能. gradle支 ...

  2. LVS实现(VS/DR)负载均衡和Keepalived高可用

    LVS是Linux Virtual Server的简写即Linux虚拟服务器,是一个虚拟的服务器集群系统一组服务器通过高速的局域网或者地理分布的广域网相互连接,在它们的前端有一个负载调度器(Load ...

  3. redis未授权getshell的4种方式

    前言 redis未授权漏洞或弱口令一直是很有用的渗透突破口,最近正好闲的无事就拿redis来测试一些,做一个简单的收集,方便自己日后的回顾. 漏洞描述 Redis 默认情况下,会绑定在 0.0.0.0 ...

  4. AFL++初探-手把手Fuzz一个PDF解析器

    CVE-2019-13288 目前漏洞在正式版本已经被修复,本文章仅供学习Fuzz过程,不存在漏洞利用的内容 这是一个pdf查看器的漏洞,可能通过精心制作的文件导致无限递归,由于程序中每个被调用的函数 ...

  5. MongoDB(9)- 文档查询操作之 find() 的简单入门

    find() MongoDB 中查询文档使用 find() find() 方法以非结构化的方式来显示所要查询的文档 语法格式 db.collection.find(query, projection) ...

  6. Python中正则表达式简介

    目录 一.什么是正则表达式 二.正则表达式的基础知识 1. 原子 1)普通字符作为原子 2)非打印字符作为原子 3) 通用字符作为原子 4) 原子表 2. 元字符 1)任意匹配元字符 2)边界限制元字 ...

  7. 大数据最后一公里——2021年五大开源数据可视化BI方案对比

    个人非常喜欢这种说法,最后一公里不是说目标全部达成,而是把整个路程从头到尾走了一遍. 大数据在经过前几年的野蛮生长以后,开始与数据中台的概念一同向着更实际的方向落地.有人问,数据可视化是不是等同于数据 ...

  8. [第十四篇]——Docker Machine之Spring Cloud直播商城 b2b2c电子商务技术总结

    Docker Machine 简介 Docker Machine 是一种可以让您在虚拟主机上安装 Docker 的工具,并可以使用 docker-machine 命令来管理主机. Docker Mac ...

  9. 238 day02_Collection、泛型

    day02[Collection.泛型] 主要内容 Collection集合 迭代器 增强for 泛型 教学目标 [ ] 能够说出集合与数组的区别 [ ] 说出Collection集合的常用功能 [ ...

  10. 【Python】python 2.7.16 x64 百度网盘

    倒霉官网下载太慢,下好了分享出来,也给自己留一个备份. 链接:点这里提取码:znaf PS: py2.7版本 for win 64位