「Codeforces 468C」Hack it!
Description
定义 \(f(x)\) 表示 \(x\) 的各个数位之和。现在要求 \(\sum_{i=l}^rf(i)\bmod a\)。
显然 ans=solve(l,r)%a; if(ans<=0) ans+=a; 会在 \(\sum_{i=l}^rf(i)\equiv 0\pmod a\) 时输出错误。给定 \(a\),请你构造一个 Hack 数据。
\(1\leq a\leq 10^{18}\),构造出的 \(l,r\) 需满足 \(1\leq l\leq r\leq 10^{200}\),同时 \(\sum_{i=l}^rf(i)\bmod a=0\)。
Solution
定义 \(g(x)=\sum_{i=1}^xf(i)\),则 \(\sum_{i=l}^rf(i)=g(r)-g(l-1)\)。
首先可以发现,对于 \(1\leq x<10^{18}\),有:
\(\displaystyle f(x+10^{18})-f(x)=1\)
也就是说,当 \([l,r]\) 从 \([x+1,x+10^{18}]\) 变成 \([x+2,x+10^{18}+1]\) 时(整体增大 \(1\)),由于 \(f(x+10^{18}+1)-f(x+1)=1\),因此结果会增加 \(1\)。
那么,当 \([l,r]\) 从 \([1,10^{18}]\) 变成 \([x+1,x+10^{18}]\) 时(整体增大 \(x\)),结果会增加 \(x\)。即:
\(\displaystyle \sum_{i=k+1}^{k+10^{18}}\equiv g(10^{18})+k\pmod a\)
若 \(g(10^{18})\equiv x\pmod a\),取 \(k=a-x\),那么:
\(\displaystyle \sum_{i=a-x+1}^{a-x+10^{18}}\equiv 0\pmod a\)
则可取 \([l,r]\) 为 \([a-x+1,a-x+10^{18}]\)。考虑如何求出 \(x\)。
不难发现,\(g(10^x)=45\times x\times 10^{x-1}+1\)。所以 \(g(10^{18})=45\times 18\times 10^{17}+1\)。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int a,x;
signed main(){
scanf("%lld",&a),x=1ull*((int)1e17%a*45%a*18%a+1)%a;
printf("%lld %lld\n",a-x+1,a-x+(int)1e18);
return 0;
}
「Codeforces 468C」Hack it!的更多相关文章
- 「CodeForces 476A」Dreamoon and Stairs
Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...
- 「CodeForces 581D」Three Logos
BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...
- 「CodeForces - 50C 」Happy Farm 5 (几何)
BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...
- 「CodeForces - 598B」Queries on a String
BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...
- 「CodeForces - 717E」Paint it really, really dark gray (dfs)
BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...
- 「CodeForces 546B」Soldier and Badges 解题报告
CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...
- 「Codeforces 79D」Password
Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- 「codeforces - 1284G」Seollal
给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...
随机推荐
- RTSP, RTP, RTCP, RTMP傻傻分不清?
RTSP基于TCP传输请求和响应报文,RTP基于UDP传输流媒体数据,RTCP基于UDP传送传输质量信息(如丢包和延迟). 比如喀什一个局域网内10个人同时点播广州的同一个源,喀什和广州之间就要传10 ...
- 【STM32】使用SDIO进行SD卡读写,包含文件管理FatFs(五)-文件管理初步介绍
其他链接 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(一)-初步认识SD卡 [STM32]使用SDIO进行SD卡读写,包含文件管理FatFs(二)-了解SD总线,命令的相关介绍 ...
- Stream collect Collectors 常用详细实例
返回List集合: toList() 用于将元素累积到List集合中.它将创建一个新List集合(不会更改当前集合). List<Integer> integers = Arrays.as ...
- swift设置导航栏item颜色和状态栏颜色
//swift设置导航栏item颜色和状态栏颜色 let dict:Dictionary =[NSForegroundColorAttributeName:UIColor.hrgb("333 ...
- Template Metaprogramming in C++
说实话,学习C++以来,第一次听说"Metaprogramming"这个名词. Predict the output of following C++ program. 1 #in ...
- 【Java基础】Java反射——Private Fields and Methods
Despite the common belief it is actually possible to access private fields and methods of other clas ...
- 【简】题解 P4297 [NOI2006]网络收费
传送门:P4297 [NOI2006]网络收费 题目大意: 给定一棵满二叉树,每个叶节点有一个状态(0,1),任选两个叶节点,如果这两个叶节点状态相同但他们的LCA所管辖的子树中的与他们状态相同的叶节 ...
- Mybatis-plus报Invalid bound statement (not found)错误
错误信息 org.springframework.security.authentication.InternalAuthenticationServiceException: Invalid bou ...
- tableau创建点位地图
一.双击省/自治区字段 二.双击销售额字段,标记类型改为圆 三.省/自治区字段设置标签显示,圆的大小和颜色细节调整,最终结果如下图所示
- 【模型推理】量化实现分享二:详解 KL 对称量化算法实现
欢迎关注我的公众号 [极智视界],回复001获取Google编程规范 O_o >_< o_O O_o ~_~ o_O 大家好,我是极智视界,本文剖析一下 K ...