Description

定义 \(f(x)\) 表示 \(x\) 的各个数位之和。现在要求 \(\sum_{i=l}^rf(i)\bmod a\)。

显然 ans=solve(l,r)%a; if(ans<=0) ans+=a; 会在 \(\sum_{i=l}^rf(i)\equiv 0\pmod a\) 时输出错误。给定 \(a\),请你构造一个 Hack 数据。

\(1\leq a\leq 10^{18}\),构造出的 \(l,r\) 需满足 \(1\leq l\leq r\leq 10^{200}\),同时 \(\sum_{i=l}^rf(i)\bmod a=0\)。

Solution

定义 \(g(x)=\sum_{i=1}^xf(i)\),则 \(\sum_{i=l}^rf(i)=g(r)-g(l-1)\)。

首先可以发现,对于 \(1\leq x<10^{18}\),有:

\(\displaystyle f(x+10^{18})-f(x)=1\)

也就是说,当 \([l,r]\) 从 \([x+1,x+10^{18}]\) 变成 \([x+2,x+10^{18}+1]\) 时(整体增大 \(1\)),由于 \(f(x+10^{18}+1)-f(x+1)=1\),因此结果会增加 \(1\)。

那么,当 \([l,r]\) 从 \([1,10^{18}]\) 变成 \([x+1,x+10^{18}]\) 时(整体增大 \(x\)),结果会增加 \(x\)。即:

\(\displaystyle \sum_{i=k+1}^{k+10^{18}}\equiv g(10^{18})+k\pmod a\)

若 \(g(10^{18})\equiv x\pmod a\),取 \(k=a-x\),那么:

\(\displaystyle \sum_{i=a-x+1}^{a-x+10^{18}}\equiv 0\pmod a\)

则可取 \([l,r]\) 为 \([a-x+1,a-x+10^{18}]\)。考虑如何求出 \(x\)。

不难发现,\(g(10^x)=45\times x\times 10^{x-1}+1\)。所以 \(g(10^{18})=45\times 18\times 10^{17}+1\)。

#include<bits/stdc++.h>
#define int long long
using namespace std;
int a,x;
signed main(){
scanf("%lld",&a),x=1ull*((int)1e17%a*45%a*18%a+1)%a;
printf("%lld %lld\n",a-x+1,a-x+(int)1e18);
return 0;
}

「Codeforces 468C」Hack it!的更多相关文章

  1. 「CodeForces 476A」Dreamoon and Stairs

    Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...

  2. 「CodeForces 581D」Three Logos

    BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...

  3. 「CodeForces - 50C 」Happy Farm 5 (几何)

    BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...

  4. 「CodeForces - 598B」Queries on a String

    BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...

  5. 「CodeForces - 717E」Paint it really, really dark gray (dfs)

    BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...

  6. 「CodeForces 546B」Soldier and Badges 解题报告

    CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...

  7. 「Codeforces 79D」Password

    Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...

  8. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

  9. 「codeforces - 1284G」Seollal

    给定 \(n\times m\) 的网格图,有些格子有障碍,无障碍且相邻的格子之间连边形成图.保证 \((1, 1)\) 无障碍,保证无障碍格子连通. 将网格图黑白染色,相邻格子颜色不同,\((1, ...

随机推荐

  1. hadoop运行jar包报错

    执行命令:[root@hadoop102 mapreduce]# hadoop jar mapreduce2_maven.jar Filter 错误信息:Exception in thread &qu ...

  2. day11 序列化组件、批量出入、自定义分页器

    day11 序列化组件.批量出入.自定义分页器 今日内容详细 ajax实现删除二次提醒(普通版本) ajax结合第三方插件sweetalert实现二次提醒(样式好看些) ajax如何发送文件数据 aj ...

  3. 零基础学习java------day2------关键字、标志符、常量、进制键的转换、java中的数据类型、强制类型转换的格式

    今日内容要求: 1. 了解关键字的概念及特点,了解保留字 2. 熟练掌握标识符的含义,特点,可使用字符及注意事项 3. 了解常量的概念,进制,进制之间相互转换,了解有符号标识法的运算方式 4. 掌握变 ...

  4. 在 Qualys SSL Labs SSL 测试中获得 A+ 评级的秘技 2021 版

    本系列文章将阐述主流应用交付控制器和主流 Web 服务器如何运行 HTTP/2 和 TLSv1.3 协议,以及如何在 SSL Test 中获得 A+ 评级. 请访问原文链接:https://sysin ...

  5. android 防止R被混淆,R类反射混淆,找不到资源ID

    在Proguard.cfg中添加 -keep class **.R$* { *;   }

  6. 【编程思想】【设计模式】【结构模式Structural】享元模式flyweight

    Python版 https://github.com/faif/python-patterns/blob/master/structural/flyweight.py #!/usr/bin/env p ...

  7. mybatis分页插件PageHelper源码浅析

    PageHelper 是Mybaties中的一个分页插件.其maven坐标 <!-- https://mvnrepository.com/artifact/com.github.pagehelp ...

  8. 通过DT10获取程序执行过程中的实时覆盖率

    DT10是新一代的动态测试工具,可以长时间跟踪记录目标程序执行情况,获取目标程序动态执行数据,帮助进行难于重现的Bug错误分析,覆盖率检测,性能测试,变量跟踪等等功能. 系统测试覆盖率,通常是用于判断 ...

  9. 『学了就忘』Linux服务管理 — 79、源码包安装的服务管理

    目录 1.源码包服务的启动管理 2.源码包服务的自启动管理 3.让源码包服务被服务管理命令识别 1.源码包服务的启动管理 # 通过源码包的安装路径,找到该服务的启动脚本, # 也就是获得该服务的启动脚 ...

  10. CentOS7学习笔记(四) 常用命令记录

    查看命令的帮助信息 man 命令查看帮助信息 在想要获取帮助信息的命令前面加上man即可,例如查看ls命令的帮助信息 [root@localhost ~]# man ls help 命令查看帮助信息 ...