bigrsa

题目:

from Crypto.Util.number import *
from flag import * n1 = 103835296409081751860770535514746586815395898427260334325680313648369132661057840680823295512236948953370895568419721331170834557812541468309298819497267746892814583806423027167382825479157951365823085639078738847647634406841331307035593810712914545347201619004253602692127370265833092082543067153606828049061
n2 = 115383198584677147487556014336448310721853841168758012445634182814180314480501828927160071015197089456042472185850893847370481817325868824076245290735749717384769661698895000176441497242371873981353689607711146852891551491168528799814311992471449640014501858763495472267168224015665906627382490565507927272073
e = 65537
m = bytes_to_long(flag)
c = pow(m, e, n1)
c = pow(c, e, n2) print("c = %d" % c) # output
# c = 60406168302768860804211220055708551816238816061772464557956985699400782163597251861675967909246187833328847989530950308053492202064477410641014045601986036822451416365957817685047102703301347664879870026582087365822433436251615243854347490600004857861059245403674349457345319269266645006969222744554974358264

思路:没什么好说的,因为给了两个n,所以可以考虑找两个n的公因数来分解n

RingRingRing

题目:

这是一个与密码系统交互的题,流程大概就是先是一个hash验证,然后要求输入100轮的a、b、c、d、e,满足\(a^4+b^4+c^4+d^4=e^2\),但是它没有要求abcd不能一样,只要求了不能输入0和不能重复,所以可以将a,b,c,d当做同一个值来看待,于是就有了\(4a^4=e^2\),\(2a^2=e\)的情况,当然100轮输入,自己手打肯定是不行的(我自己最高也就手打到65轮),所以要写个脚本来交互

由于需要交互,所以需要python中的pwntools这个扩展包来搞定。

下面是几个脚本的汇总(看着别人的脚本,感觉自己写的简直……)

#我自己写的,勉强能用
from pwn import *
import hashlib
#context.log_level = "debug"
sock = remote('192.168.40.249',2378)
back1=sock.recvline()
print(back1) #打印返回值
md5send=b'0'
a1=back1[36:40]
a2=back1[50:55]
b1=str(a1)[2:-1]
b2=str(a2)[2:-1]
print(b1)
print(b2)
for i in range(10000000):
if hashlib.md5((str(i) + b1).encode("utf-8")).hexdigest()[0:5] == b2:
md5send=str(i)
break
sock.sendline(md5send)
print(sock.recvline())
for i in range(1,101):
print(i)
sock.recv(1024)
sock.send(str(i))
sock.recv(1024)
sock.send(str(i))
sock.recv(1024)
sock.send(str(i))
sock.recv(1024)
sock.send(str(i))
sock.recv(1024)
sock.send(str(2*(i**2)))
print(sock.recvline())
#某个大佬给我的
import hashlib
from pwn import * def r_md5(s1, s2):
for i in range(10000000):
if hashlib.md5((str(i) + s1).encode("utf-8")).hexdigest()[0:5] == s2:
return str(i) res = [[1,2],[2,8],[3,18],[4,32],[5,50],[6,72],[7,98],[8,128],[9,162],[10,200],[11,242],[12,288],[13,338],[14,392],[15,450],[16,512],[17,578],[18,648],[19,722],[20,800],[21,882],[22,968],[23,1058],[24,1152],[25,1250],[26,1352],[27,1458],[28,1568],[29,1682],[30,1800],[31,1922],[32,2048],[33,2178],[34,2312],[35,2450],[36,2592],[37,2738],[38,2888],[39,3042],[40,3200],[41,3362],[42,3528],[43,3698],[44,3872],[45,4050],[46,4232],[47,4418],[48,4608],[49,4802],[50,5000],[51,5202],[52,5408],[53,5618],[54,5832],[55,6050],[56,6272],[57,6498],[58,6728],[59,6962],[60,7200],[61,7442],[62,7688],[63,7938],[64,8192],[65,8450],[66,8712],[67,8978],[68,9248],[69,9522],[70,9800],[71,10082],[72,10368],[73,10658],[74,10952],[75,11250],[76,11552],[77,11858],[78,12168],[79,12482],[80,12800],[81,13122],[82,13448],[83,13778],[84,14112],[85,14450],[86,14792],[87,15138],[88,15488],[89,15842],[90,16200],[91,16562],[92,16928],[93,17298],[94,17672],[95,18050],[96,18432],[97,18818],[98,19208],[99,19602],[100,20000]]
if __name__ == "__main__":
#context.log_level = "debug"
p = remote('192.168.40.249', 2378)
s = str(p.recvline())
s1, s2 = s[38:42], s[52:57]
xxxxx = r_md5(s1,s2)
print(xxxxx)
p.recv(1024)
p.sendline(xxxxx)
p.recvline()
p.recvline()
for i in range(100):
p.recv(1024)
p.sendline(str(res[i][0]))
p.recv(1024)
p.sendline(str(res[i][0]))
p.recv(1024)
p.sendline(str(res[i][0]))
p.recv(1024)
p.sendline(str(res[i][0]))
p.recv(1024)
p.sendline(str(res[i][1]))
p.recvline()
p.recvline()
p.recvline()
p.recvline()
# 商业转载请联系作者获得授权,非商业转载请注明出处。
# For commercial use, please contact the author for authorization. For non-commercial use, please indicate the source.
# 协议(License):署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)
# 作者(Author):
# 链接(URL):https://www.wkr.moe/ctf/562.html
# 来源(Source): from hashlib import md5
from string import digits, ascii_lowercase
from pwn import connect def go(strend, hashstart):
hexdigits = digits+ascii_lowercase[0:6]
for i in hexdigits:
for j in hexdigits:
for k in hexdigits:
for l in hexdigits:
for m in hexdigits:
for n in hexdigits:
str = i + j + k + l + m + n
if md5(f'{str}{strend}'.encode()).hexdigest()[0:5] == hashstart:
return str if __name__ == '__main__':
conn = connect('192.168.39.181', 2378)
prevQ = conn.recvuntil(b'[>] Give me xxxxx: ')
print(prevQ[36:40].decode(), prevQ[50:55].decode())
prevA = go(prevQ[36:40].decode(), prevQ[50:55].decode())
conn.sendline(prevA.encode())
print(conn.recvlines(2))
for _ in range(1, 101):
for __ in range(4):
#输入一样的abcd
print(conn.recvn(7))
conn.send(str(_).encode())
#输入不一样的e
print(conn.recvn(7))
conn.send(str((_ ** 2) * 2).encode())
#接收每一轮返回的‘You are right’
print(conn.recvlines(1))
print(conn.recvlines(1)) # flag
conn.close()

最后一个脚本的来源

RSA?

题目:

import os
from Crypto.Util.number import * flag = "GWHT{xxxxxxxxx}"
p = getPrime(256)
q = getPrime(256)
n = p*q
N = (p-1)*(q-1)
e = 65537
Mx = bytes_to_long(os.urandom(30))
My = bytes_to_long(flag)
Z1 = (Mx*My)%n
inv_Z1 = inverse_mod(Z1, n)
inv_2 = inverse_mod(2, n)
X = ((Z1+inv_Z1)*inv_2)%n
Y = My
inv_Y = inverse_mod(Y, n)
a = ((inv_Z1-X)*inv_Y)%n
D = (a*a)%n xy = lambda (x1,y1),(x2,y2) : ((x1*x2+D*y1*y2)%n, (x1*y2+x2*y1)%n)
def getloop((x,y), e):
ret = (x, y)
for i in range(e-1):
ret = xy(ret, (x,y))
return ret print n
print getloop((X, Y), e)
print a # 13390709926509813526471364597371124446888078365567927211781799241724742352679484983709219580483800891886832613684875066109177882219522305348565532970795023
# (5404548088049249951619519701935576492239293254135836357417714329205323074367876875480850741613547220698045360461761929952847796420174204143917852624050110, 2110372753170830610718226848526649992911771424441223687775304654852191999130502986109306355582366065947895295520226816523397652918227241733632791793362785)
# 1762039418842677123086894939949574689744108610561557889235294034870342076452734215004689409493802437034960516295735815195656138656970901855976802991519141

过程:

略过前面的RSA参数赋值,开始看:

Mx = bytes_to_long(os.urandom(30))

My = bytes_to_long(flag)

Z1 = (Mx*My)%n

inv_Z1 = inverse_mod(Z1, n)

inv_2 = inverse_mod(2, n)

Mx和My分别是随机生成的大小(长度)为30的字符串和flag对应的长整数,用数学公式表示为:

\[inv\_Z_1=\frac{1}{Z_1}\\
inv\_2=\frac{1}{2}
\]

X = ((Z1+inv_Z1)*inv_2)%n

Y = My

inv_Y = inverse_mod(Y, n)

表示为:

\[\begin{equation}
\begin{aligned}
X&=(Z_1+\frac{1}{Z_1})*\frac{1}{2}\ mod\ n \\
&=(M_XM_y+\frac{1}{M_xM_y})*\frac{1}{2}\ mod\ n \\
&=\frac{1+M_x^2M_y^2}{2M_xM_y} \\
Y&=M_y \\
in&v\_Y=\frac{1}{M_y}
\end{aligned}
\end{equation}
\]

a = ((inv_Z1-X)inv_Y)%n

D = (a
a)%n

\[\begin{equation}
\begin{aligned}
a&=((\frac{1}{Z_1}-X)*\frac{1}{Y})\ mod\ n \\
&=((\frac{2-1-M_x^2M_y^2}{2M_xM_y})*\frac{1}{M_y})\ mod\ n \\
&=\frac{1-M_x^2M_y^2}{2M_xM_y^2}\ mod\ n \\
D&=\frac{(1-M_x^2M_y^2)^2}{4M_x^2M_y^4}\ mod\ n
\end{aligned}
\end{equation}
\]

xy = lambda (x1,y1),(x2,y2) : ((x1x2+Dy1y2)%n, (x1y2+x2*y1)%n)

def getloop((x,y), e):

ret = (x, y)

for i in range(e-1):

ret = xy(ret, (x,y))

return ret

这段代码是非常难顶的,因为它看起来好大,当时做题的时候我看了看,感觉好像会很长,下意识的认为这个没办法列出来具体的数学公式,而且它看起来类似分组密码。

公式如下:

\[\begin{equation}
\begin{aligned}
&n=0,X_0=X=\frac{1+M_x^2M_y^2}{2M_xM_y},Y_0=M_y \\
&n=1,X_1=\frac{1+M_x^4M_y^4}{2M_x^2M_y^2},Y_1=\frac{1+M_x^2M_y^2}{M_x} \\
&n=2,X_2=\frac{1+M_x^6M_y^6}{2M_x^3M_y^3},Y_2=\frac{1+M_x^2M_y^2+M_x^4M_y^4}{M_x^2M_y}
\end{aligned}
\end{equation}
\]

所以,以此类推,可得:

\[X_n=\frac{1+M_x^{2n+2}M_y^{2n+2}}{2M_x^{n+1}M_y^{n+1}},Y_n=\frac{\sum_{i=0}^{n}M_x^{2n}M_y^{2n}}{M_x^nM_y^{n-1}}
\]

然后则是关键点:要用Yn乘a来完成Yn与Xn之间的联系:

\[\begin{equation}
\begin{aligned}
Y_n*a&=\frac{\sum_{i=0}^{n}M_x^{2n}M_y^{2n}}{M_x^nM_y^{n-1}}*\frac{1-M_x^2M_y^2}{2M_xM_y^2} \\
&=\frac{1-M_x^{2n+2}M_y^{2n+2}}{2M_x^{n+1}M_y^{n+1}} \\
&=X_n-\frac{2M_x^{2n+2}M_y^{2n+2}}{2M_x^{n+1}M_y^{n+1}} \\
&=X_n-M_x^{n+1}M_y^{n+1}(注意这里不是X_n-M_x^{2}M_y^{2})
\end{aligned}
\end{equation}
\]

又因为\(Y_n、X_n、a\)三个量是已知的,所以可以求得\(M_x^{n+1}M_y^{n+1}\)的值(这里的n是e-1)也就是\((M_xM_y)^e(mod\ n)\),而这个形式也是RSA加密的形式,那么需要找到e在模n的逆元d。这道题并没有给出关于n的分解的提示,那么尝试用yafu分解,可以得到:

fac: factoring 13390709926509813526471364597371124446888078365567927211781799241724742352679484983709219580483800891886832613684875066109177882219522305348565532970795023

fac: using pretesting plan: normal

fac: no tune info: using qs/gnfs crossover of 95 digits

div: primes less than 10000

fmt: 1000000 iterations

Total factoring time = 0.1120 seconds

factors found

P78 = 115718235064789220654263009993128325569382592506655305434488398268608329541037

P78 = 115718235064789220654263009993128324769382192706654302434478391267607309966379

ans = 1

到了这一步以后,就会发现解出来是\(M_xM_y\),而flag是\(M_y\),那么可以找一找公式中\(M_x/M_y\)不是齐次的有a和D(其实这两个等价)又因为给出了a的值,所以a和D都可以来求出\(M_y\):

\[\begin{equation}
\begin{aligned}
a&=\frac{1-M_x^2M_y^2}{2M_xM_y^2} \\
M_y&=\frac{1-(M_xM_y)^2}{2aM_xM_y}
\end{aligned}
\end{equation}
\]

脚本:

from Crypto.Util.number import long_to_bytes
from gmpy2 import invert
p=115718235064789220654263009993128324769382192706654302434478391267607309966379
q=115718235064789220654263009993128325569382592506655305434488398268608329541037
n=p*q
X_n=5404548088049249951619519701935576492239293254135836357417714329205323074367876875480850741613547220698045360461761929952847796420174204143917852624050110
Y_n=2110372753170830610718226848526649992911771424441223687775304654852191999130502986109306355582366065947895295520226816523397652918227241733632791793362785
a=1762039418842677123086894939949574689744108610561557889235294034870342076452734215004689409493802437034960516295735815195656138656970901855976802991519141
e=65537
d=invert(e,(p-1)*(q-1))
MXMY=pow((X_n-Y_n*a)%n,d,p*q)
MY=(1-MXMY**2)*invert(2,n)*invert(MXMY,n)*invert(a,n) %n
#这里一定要有一个模n的操作,不然会得到一个负数,并且这里也不能直接除以2*a*MXMY,一定得是它们的模n的逆元
print(long_to_bytes(MY))

GWHT{pell_equation_is_very_interesting}

今天看博客,发现有一个wp里面说这个方程很像Pell方程,可以参考这篇文章:佩尔(Pell)方程,而这篇论文A PUBLIC KEY CRYPTOSYSTEM BASED ON PELL EQUATION则讲述了一个基于Pell方程的公钥密码系统,可以拿来参考一下~

easy_rsa

easyrsa就从来都没有easy过……

题目:

from Crypto.Util.number import *
from flag import flag
import gmpy2 def gen_prime(nbits, gamma):
g = getPrime(int(nbits * gamma)) #491
alpha = 0.5 - gamma #0.02
while True:
a = getRandomNBitInteger(int(alpha * nbits)) #20
p = 2 * g * a + 1
if isPrime(p):
b = getRandomNBitInteger(int(alpha * nbits))
q = 2 * g * b + 1
h = 2 * g * a * b + a + b
while not isPrime(q) or isPrime(h) or gmpy2.gcd(a, b) != 1: #保证q是素数,h不是素数,a、b没有公约数
b = getRandomNBitInteger(int(alpha * nbits))
q = 2 * g * b + 1
return p, q def encrypt(nbits, gamma):
p, q = gen_prime(nbits, gamma)
n = p * q
e = getPrime(16)
while gmpy2.gcd(e, gmpy2.lcm(p-1,q-1)) != 1:
e = getPrime(16)
m = bytes_to_long(flag)
c = pow(m, e, n)
return n, e, c n, e, c = encrypt(1024, 0.48)
print 'n =', n
print 'e =', e
print 'c =', c # n = 84236796025318186855187782611491334781897277899439717384242559751095347166978304126358295609924321812851255222430530001043539925782811895605398187299748256080526691975084042025794113521587064616352833904856626744098904922117855866813505228134381046907659080078950018430266048447119221001098505107823645953039
# e = 58337
# c = 13646200911032594651110040891135783560995665642049282201695300382255436792102048169200570930229947213493204600006876822744757042959653203573780257603577712302687497959686258542388622714078571068849217323703865310256200818493894194213812410547780002879351619924848073893321472704218227047519748394961963394668

这道题的解法主要在于Pollard's rho algorithm的修改应用,具体的参考来源为:RSA - Large Common Factor of p-1 and q-1,但可惜的是我并不知道里面的原理……大佬写的太简略了啊~

结论反正就是用\(x^{N-1}+3\)来代替rho中的迭代函数,能在比较短的时间里分解N

拿大佬的脚本修改后就可以得到解题脚本:

from Crypto.Util.number import *
from gmpy2 import invert def f(x, n):
return (pow(x, n - 1, n) + 3) % n def rho(n):
i = 1
while True:
a = getRandomRange(2, n)
b = f(a, n)
j = 1
while True:
p = GCD(abs(a - b), n)
print('{} in {} circle'.format(j, i))
if p == n:
break
elif p > 1:
return (p, n // p)
else:
a = f(a, n)
b = f(f(b, n), n)
j += 1
i += 1 n = 84236796025318186855187782611491334781897277899439717384242559751095347166978304126358295609924321812851255222430530001043539925782811895605398187299748256080526691975084042025794113521587064616352833904856626744098904922117855866813505228134381046907659080078950018430266048447119221001098505107823645953039
c=13646200911032594651110040891135783560995665642049282201695300382255436792102048169200570930229947213493204600006876822744757042959653203573780257603577712302687497959686258542388622714078571068849217323703865310256200818493894194213812410547780002879351619924848073893321472704218227047519748394961963394668
e=58337 p,q=rho(n)
d=invert(e,(p-1)*(q-1))
print(long_to_bytes(pow(c,d,n)))

b'SangFor{0a8c2220-4c1b-32c8-e8c1-adf92ec7678b}'

miss

题目:

簜9%k? 櫌mO

题目脚本:

#!/usr/bin/env python3

from Crypto import Random

S_BOX = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,] RCON_BOX = [
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d] GF_MULT_1 = [
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xbe,0xbf,
0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xcf,
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff] GF_MULT_2 = [
0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,
0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,
0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,
0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,
0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,
0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,
0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,
0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,
0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,
0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5] GF_MULT_3 = [
0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,
0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,
0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,
0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,
0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,
0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,
0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,
0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,
0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,
0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,
0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,
0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,
0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,
0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,
0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,
0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a] def rotWord(byteArray):
res = bytearray() res.append(byteArray[1])
res.append(byteArray[2])
res.append(byteArray[3])
res.append(byteArray[0]) return res def subWord(byteArray):
res = bytearray() for b in byteArray:
res.append( S_BOX[b] ) return res def rcon(i):
res = bytearray() res.append(RCON_BOX[i])
res.append(0)
res.append(0)
res.append(0) return res def xor(byteArray1, byteArray2):
res = bytearray() for b1, b2 in zip(byteArray1, byteArray2):
res.append(b1 ^ b2) return res def keyExpansion(key,round): lastcolumn = key[-4:] resRcon = rotWord(lastcolumn) resSub = subWord(resRcon) res1XOR = xor(resSub,key[:4]) newFirstColumn = xor(res1XOR,rcon(round)) newKey = newFirstColumn for i in range(1,4):
part1XOR = newKey[-4:]
part2XOR = key[i*4:(i+1)*4]
newKey += xor(part1XOR, part2XOR) return newKey def subBytes(aesState):
resState = bytearray() for i in range(0,len(aesState),4):
resState[i:i+4] = subWord(aesState[i:i+4]) return resState def shiftRow(aesState): resState = bytearray() newPosition = [ 0, 5, 0xa, 0xf,4, 9, 0xe, 3,8, 0xd, 2, 7, 0xc, 1, 6, 0xb ] for i in newPosition:
resState.append(aesState[i]) return resState def mixColumn(aesState): res = bytearray() for i in range(0,len(aesState),4):
b0, b1, b2, b3 = aesState[i:i+4] new_b0 = GF_MULT_2[b0] ^ GF_MULT_3[b1] ^ GF_MULT_1[b2] ^ GF_MULT_1[b3]
new_b1 = GF_MULT_1[b0] ^ GF_MULT_2[b1] ^ GF_MULT_3[b2] ^ GF_MULT_1[b3]
new_b2 = GF_MULT_1[b0] ^ GF_MULT_1[b1] ^ GF_MULT_2[b2] ^ GF_MULT_3[b3]
new_b3 = GF_MULT_3[b0] ^ GF_MULT_1[b1] ^ GF_MULT_1[b2] ^ GF_MULT_2[b3] res.append(new_b0)
res.append(new_b1)
res.append(new_b2)
res.append(new_b3) return res def AES_Encryption(plainText, AES_key, nbRound): res = bytearray()
plainTextBytes = plainText KeyList = [AES_key] for i in range(1, nbRound+1):
KeyList.append(keyExpansion(KeyList[-1],i)) res = plainTextBytes for i in range(1,nbRound): res = subBytes(res) res = shiftRow(res) res = mixColumn(res) key = KeyList[i] res = subBytes(res)
res = shiftRow(res) return res def StringToByteArray(msg):
return [ord(x) for x in msg] def ByteArrayToString(cipher):
return ''.join([chr(x) for x in cipher]) def main(): AES_Key = Random.get_random_bytes(16) with open("flag.txt","rb") as f_in:
flag = f_in.read() cipherText = AES_Encryption(flag, AES_Key,10) with open("cipher.txt","wb") as f_out:
f_out.write(cipherText) if __name__ == '__main__':
main()

解题脚本:

# -*- coding: utf-8 -*-
"""
Created on Tue Sep 14 23:19:19 2021 @author: 01am
""" S_BOX = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,] S_INV_BOX = [
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d] RCON_BOX = [
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d] GF_MULT_1 = [
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xbe,0xbf,
0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xcf,
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff] GF_MULT_2 = [
0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,
0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,
0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,
0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,
0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,
0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,
0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,
0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,
0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,
0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5] GF_MULT_3 = [
0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,
0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,
0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,
0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,
0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,
0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,
0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,
0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,
0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,
0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,
0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,
0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,
0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,
0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,
0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,
0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a] GF_MULT_09 = [
0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,
0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,
0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,
0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,
0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,
0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,
0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,
0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,
0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,
0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,
0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,
0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,
0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,
0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,
0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46] GF_MULT_11 = [
0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,
0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,
0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,
0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,
0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,
0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,
0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,
0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,
0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,
0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,
0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,
0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,
0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,
0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,
0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,
0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3] GF_MULT_13 = [
0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,
0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,
0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,
0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,
0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,
0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,
0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,
0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,
0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,
0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,
0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,
0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,
0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,
0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,
0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,
0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97] GF_MULT_14 = [
0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,
0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,
0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,
0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,
0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,
0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,
0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,
0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,
0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,
0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,
0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,
0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,
0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,
0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,
0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,
0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d] def inv_subWord(byteArray):
res = bytearray() for b in byteArray:
res.append( S_INV_BOX[b] ) return res def inv_subBytes(aesState):
resState = bytearray() for i in range(0,len(aesState),4):
resState[i:i+4] = inv_subWord(aesState[i:i+4]) return resState def inv_shiftRow(aesState):
resState = bytearray() """
0 4 8 c 0 4 8 c
1 5 9 d d 1 5 9
2 6 a e -> a e 2 6
3 7 b f 7 b f 3
""" newPosition = [ 0, 0xd, 0xa, 7,
4, 1, 0xe, 0xb,
8, 5, 2, 0xf,
0xc, 9, 6, 3
] for i in newPosition:
resState.append(aesState[i]) return resState def inv_mixColumn(aesState): res = bytearray() for i in range(0,len(aesState),4):
b0, b1, b2, b3 = aesState[i:(i+4)] new_b0 = GF_MULT_14[b0] ^ GF_MULT_11[b1] ^ GF_MULT_13[b2] ^ GF_MULT_09[b3]
new_b1 = GF_MULT_09[b0] ^ GF_MULT_14[b1] ^ GF_MULT_11[b2] ^ GF_MULT_13[b3]
new_b2 = GF_MULT_13[b0] ^ GF_MULT_09[b1] ^ GF_MULT_14[b2] ^ GF_MULT_11[b3]
new_b3 = GF_MULT_11[b0] ^ GF_MULT_13[b1] ^ GF_MULT_09[b2] ^ GF_MULT_14[b3] res.append(new_b0)
res.append(new_b1)
res.append(new_b2)
res.append(new_b3) return res def AES_Decryption(cipherText, AES_key, nbRound): res = cipherText res = inv_shiftRow(res) res = inv_subBytes(res) for i in range(nbRound-1, 0, -1): res = inv_mixColumn(res) res = inv_shiftRow(res) res = inv_subBytes(res) return res def main(): AES_Key = None with open(r"D:\code\ctf题目\Crypto\2021羊城杯\miss\miss-59d0d460-aa0d-45a8-b6e7-14b1b32b8a59\cipher.txt","rb") as f_in:
cipherText = f_in.read() secondPlainText = AES_Decryption(cipherText, AES_Key,10) print(secondPlainText) if __name__ == '__main__':
main()

脚本只要把最后的main函数中的open改成自己的就可以

bytearray(b'SangFor{cb4_k27}')

这道题先摸了,回头在认真写

think about it

这题目前也没有找到wp

参考:

  1. 2021羊城杯 部分CRYPTO WP
  2. 羊城杯-高校组-S1gMa战队wp 同一篇文章的 另一个地址
  3. Miss题目脚本的来源
  4. 羊城杯2021-WP

2021羊城杯比赛复现(Crypto)的更多相关文章

  1. 2021 羊城杯WriteUP

    比赛感受 题目质量挺不错的,不知道题目会不会上buu有机会复现一下,躺了个三等奖,发下队伍的wp Team BinX from GZHU web Checkin_Go 源码下载下来发现是go语言写的 ...

  2. 2021蓝桥杯省赛B组(C/C++)E.路径【最短路DP】

    2021蓝桥杯省赛B组题目(C/C++)E.路径 最短路径, 因为变化情况比较多, 所以开始想的是深搜, 但是太慢了, 跑不出来, 后来就想着优化一下, 有的地方到另一个地方可能会考虑很多遍, 于是考 ...

  3. 2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP详细版

    2021蓝桥杯省赛C++A组试题E 回路计数 状态压缩DP 题目描述 蓝桥学院由21栋教学楼组成,教学楼编号1到21.对于两栋教学楼a和b,当a和b互质时,a和b之间有一条走廊直接相连,两个方向皆可通 ...

  4. 记intel杯比赛中各种bug与debug【其一】:安装intel caffe

    因为intel杯创新软件比赛过程中,并没有任何记录.现在用一点时间把全过程重演一次用作记录. 学习 pytorch 一段时间后,intel比赛突然不让用 pytoch 了,于是打算转战intel ca ...

  5. 记intel杯比赛中各种bug与debug【其四】:基于长短时记忆神经网络的中文分词的实现

    (标题长一点就能让外行人感觉到高大上) 直接切入主题好了,这个比赛还必须一个神经网络才可以 所以我们结合主题,打算写一个神经网络的中文分词 这里主要写一下数据的收集和处理,网络的设计,代码的编写和模型 ...

  6. 百度杯 black_hole复现

    在这次复现中,经历了太多挫折. 刚刚开始的时候本地调试 get不到shell,就很疑问,而且不会爆破,想学下怎么爆破出那个0x05, 后来问了位师傅 ,他说用retdl_solve 试试,我就跑去学了 ...

  7. C语言蓝桥杯比赛原题和解析

    蓝桥杯:在计算机编程领域,是具有一定含金量的竞赛,用于选拔信息技术人才. 一般分为多个领域,其中包含了C/C#/C++/Java/Python等编程语言的测试题,多为算法的设计题. 下面,在搜题过程中 ...

  8. 羊城杯wp babyre

    肝了好久,没爆破出来,就很难受,就差这题没写了,其他三题感觉挺简单的,这题其实也不是很难,我感觉是在考算法. 在输入之前有个smc的函数,先动调,attach上去,ida打开那个关键函数. 代码逻辑还 ...

  9. 2021“MINIEYE杯”中国大学生算法设计超级联赛(7)部分题解

    前言 找大佬嫖到个号来划水打比赛了,有的题没写或者不是我写的就不放了. 目前只有:1004,1005,1007,1008,1011 正题 题目链接:https://acm.hdu.edu.cn/con ...

随机推荐

  1. Python项目生成requirements.txt文件及pip升级问题解决及流程

    缘由:新项目使用Python, PC上的python包不全,需要通过requirements.txt文件指定安装所需包 pip安装遇到一些坑 一.直接使用pip包管理工具生成requirements. ...

  2. SpringBoot 之 国际化

    增加国际化i18n语言配置: # src/main/resources/i18n/login.properties login.btn=登录 # src/main/resources/i18n/log ...

  3. hisql 新功能 支持一套sql在不同数据库执行

    目前流行的ORM框架如果需要动态的拼接查询语句,只能用原生的sql进行拼接,无法跨不同数据库执行.hisql推出新的语法一套语句可以在不同的数据库执行 传统ORM框架最大的弊端就是完全要依赖于实体用l ...

  4. 动静分离、Rewirte、HTTPS

    目录 Nginx动静分离技术 示例搭建步骤 部署NFS 静态资源共享 部署代理服务器 Rewrite(重点) Rewrite基本概述 rewrite语法 rewrite标记Flag last和brea ...

  5. Keil MDK STM32系列(五) 使用STM32CubeMX创建项目基础结构

    Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...

  6. 【Java】获取两个字符串中最大相同子串

    题目 获取两个字符串中最大相同子串 前提 两个字符串中只有一个最大相同子串 解决方案 public class StringDemo { public static void main(String[ ...

  7. Javascript实现让小图片一直跟着鼠标移动

    Javascript实现让小图片一直跟着鼠标移动实例 注意:图片可能加载不出来,注意更换 <!doctype html> <html> <head> <met ...

  8. 【计算机理论】CSAPP ch2

    信息存储 十六进制表示法 (略) 字数据大小 大多数计算机使用8bit的块(字节)作为最小的可寻址的内存单元 字长指明了指针数据的标称大小(?) 64位系统和32位系统向后兼容 C语言中有些数据类型的 ...

  9. vivo数据库与存储平台的建设和探索

    本文根据Xiao Bo老师在"2021 vivo开发者大会"现场演讲内容整理而成.公众号回复[2021VDC]获取互联网技术分会场议题相关资料. 一.数据库与存储平台建设背景 以史 ...

  10. FreeSWITCH 对接RTSP和RTMP视频

    在某些场景需要把摄像头或者其它推流视频加入FreeSWITCH.因此可以采用如下方式处理: 安装mod_vlc 然后在配置文件中加入 < action applicaiton="pla ...