[ARC117D]Miracle Tree
将$E_{i}$从小到大排序(显然不会相同),假设$E_{p_{i}}$为从小到大第$i$小
此时,必然有$E_{p_{1}}=1$,否则可以将$E_{p_{i}}$都减去$E_{p_{1}}-1$,之后即需要最小化$E_{p_{n}}$
当$p_{i}$确定后,题目中第2个条件即可变为$\forall 1\le i<j\le n,E_{p_{j}}-E_{p_{i}}\ge dist(p_{i},p_{j})$
取$j=i+1$时,即可推出$\forall 1\le i<n,E_{p_{i+1}}-E_{p_{i}}\ge dist(p_{i},p_{i+1})$
另一方面,此时即有$E_{p_{j}}-E_{p_{i}}=\sum_{k=i}^{j-1}E_{p_{k+1}}-E_{p_{k}}\ge \sum_{k=i}^{j-1}dist(p_{k},p_{k+1})\ge dist(p_{i},p_{j})$
(关于最后一个不等号,根据$dist(x,y)\le dist(x,z)+dist(z,y)$即可得到)
换言之,题目中第2个条件等价于$j=i+1$时的条件,那么$E_{p_{n}}$最小值即为$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})+1$
现在,问题即变为确定$p_{i}$,以最小化$E_{p_{n}}$(也即$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})+1$)
考虑将其补上$dist(p_{1},p_{n})$,此时考虑每一条边对答案的贡献,至少为2,且通过令$p_{i}$为dfs序来构造,可取到此下限,即和为$2(n-1)+1$
令$p_{1}$和$p_{n}$为树直径的两个端点,并以$p_{1}$为根优先搜索不包含$p_{n}$的子树即可构造出对应dfs序,令$d$为直径长度,则最终$E_{p_{n}}$即为$2(n-1)+1-d$
另外求$E_{i}$不需要求lca来求$dist(p_{i},p_{i+1})$,由于$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})$是$o(n)$的,直接在树上暴力移动,并判定其是否是后代即可
另外,题解中还提到了如何$o(n)$实现spj,只需要用桶排来对$p_{i}$排序,并以此判定相邻两者插值是否恰好为其距离即可

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 struct Edge{
5 int nex,to;
6 }edge[N<<1];
7 int E,n,x,y,head[N],dfn[N],f[N],sz[N],dep[N],P[N],ans[N];
8 bool check(int x,int y){
9 return (dfn[x]<=dfn[y])&&(dfn[y]<dfn[x]+sz[x]);
10 }
11 void add(int x,int y){
12 edge[E].nex=head[x];
13 edge[E].to=y;
14 head[x]=E++;
15 }
16 int dis(int x,int y){
17 int ans=0;
18 while (!check(x,y)){
19 ans++;
20 x=f[x];
21 }
22 while (!check(y,x)){
23 ans++;
24 y=f[y];
25 }
26 return ans;
27 }
28 void dfs(int k,int fa,int s){
29 dfn[k]=++dfn[0];
30 f[k]=fa;
31 sz[k]=1;
32 dep[k]=s;
33 for(int i=head[k];i!=-1;i=edge[i].nex)
34 if (edge[i].to!=fa){
35 dfs(edge[i].to,k,s+1);
36 sz[k]+=sz[edge[i].to];
37 }
38 }
39 void construct(int k,int fa){
40 P[++P[0]]=k;
41 for(int i=head[k];i!=-1;i=edge[i].nex)
42 if ((edge[i].to!=fa)&&(!check(edge[i].to,y)))construct(edge[i].to,k);
43 for(int i=head[k];i!=-1;i=edge[i].nex)
44 if ((edge[i].to!=fa)&&(check(edge[i].to,y)))construct(edge[i].to,k);
45 }
46 int main(){
47 scanf("%d",&n);
48 memset(head,-1,sizeof(head));
49 for(int i=1;i<n;i++){
50 scanf("%d%d",&x,&y);
51 add(x,y);
52 add(y,x);
53 }
54 dfs(1,0,0);
55 x=y=1;
56 for(int i=2;i<=n;i++)
57 if (dep[x]<dep[i])x=i;
58 dfs(x,0,0);
59 for(int i=2;i<=n;i++)
60 if (dep[y]<dep[i])y=i;
61 construct(x,0);
62 ans[P[1]]=1;
63 for(int i=1;i<n;i++)ans[P[i+1]]=ans[P[i]]+dis(P[i],P[i+1]);
64 for(int i=1;i<=n;i++)printf("%d ",ans[i]);
65 }
[ARC117D]Miracle Tree的更多相关文章
- Atcoder Regular Contest 117 D - Miracle Tree(分析性质+构造)
Atcoder 题面传送门 笑死,阴间语文作业到现在还没写完,为了在这个点保持精神,我只好来颓篇题解辣 我们考虑探究一下怎么最小化 \(\max\limits_{i=1}^nE_i\),我们假设 \( ...
- QTREE5 - Query on a tree V——LCT
QTREE5 - Query on a tree V 动态点分治和动态边分治用Qtree4的做法即可. LCT: 换根后,求子树最浅的白点深度. 但是也可以不换根.类似平常换根的往上g,往下f的拼凑 ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 好像这个题只能Dsu On Tree? 有根树点分治 统计子树过x的 ...
- AT3912 Antennas on Tree
AT3912 Antennas on Tree %%zzt 只能考虑性质了. 把最后选择的k个点的连通块求出来,连通块内部的点表示都是互异的 连通块外部的点只能形成若干条链,并且这k个点的每一个最多与 ...
- CF1055F Tree and XOR
CF1055F Tree and XOR 就是选择两个数找第k大对儿 第k大?二分+trie上验证 O(nlognlogn) 直接按位贪心 维护可能的决策点(a,b)表示可能答案的对儿在a和b的子树中 ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- SAP CRM 树视图(TREE VIEW)
树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...
- 无限分级和tree结构数据增删改【提供Demo下载】
无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...
- 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
随机推荐
- windows中抓包命令,以及保存为多个文件的方法
本文主要介绍windows中抓包命令,以及保存为多个文件的方法 说一说保存为多个文件存储数据包这个问题的由来,一般如果长时间抓包,有可能需要等上几个小时,因为这个时候抓包的内容都是存放在内存中的,几个 ...
- 如何在 Serverless K8s 集群中低成本运行 Spark 数据计算?
作者 | 柳密 阿里巴巴阿里云智能 ** 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 ...
- python 注册 gin consul
import requests headers = { "contentType": "application/json" } def register(nam ...
- SpringBoot整合Mabatis
1.导入 MyBatis 所需要的依赖 <dependency> <groupId>org.mybatis.spring.boot</groupId> <ar ...
- 【集成学习】:Stacking原理以及Python代码实现
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好.今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理.并在博文的后面附 ...
- vue3 element-plus 配置json快速生成form表单组件,提升生产力近600%(已在公司使用,持续优化中)
️本文为博客园社区首发文章,未获授权禁止转载 大家好,我是aehyok,一个住在深圳城市的佛系码农♀️,如果你喜欢我的文章,可以通过点赞帮我聚集灵力️. 个人github仓库地址: https:gi ...
- 小白自制Linux开发板 六. SPI TFT屏幕修改与移植
本文章参考:https://www.bilibili.com/read/cv9947785?spm_id_from=333.999.0.0 本篇通过SPI接口,使用ST7789V TFT焊接屏(13p ...
- 远程设备管理opendx平台搭建-appium和adb的安装
多年不见了,说起来也有3年了我又开始写博客了,这几年我还是没啥长进,还是干测试,但是测试行业的话,我已经成了一个测开了,也在搭建自己的测试网站 本系列文章讲述的是一个系列的第一部分,最终可以搭建一整套 ...
- Vue CLI 5 和 vite 创建 vue3.x 项目以及 Vue CLI 和 vite 的区别
这几天进入 Vue CLI 官网,发现不能选择 Vue CLI 的版本,也就是说查不到 vue-cli 4 以下版本的文档. 如果此时电脑上安装了 Vue CLI,那么旧版安装的 vue 项目很可能会 ...
- [软工顶级理解组] 团队任务拆解(Alpha)
一.任务概述 在alpha阶段,我们需要完成功能规格说明书中所提到的所有功能,在一个阶段的开发周期内,交付最小可行的可用版本. 二.任务分配及时长 分组&成员 具体任务 预计时长(小时) 前端 ...