面试题 08.12. N皇后
题目
设计一种算法,打印 N 皇后在 N × N 棋盘上的各种摆法,其中每个皇后都不同行、不同列,也不在对角线上。这里的“对角线”指的是所有的对角线,不只是平分整个棋盘的那两条对角线。
注意:本题相对原题做了扩展
示例:
输入:4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
分析
这道题用回溯法的思路很清晰,重点在于如何判断当前放置棋子的位置是否合理。按行依次落子,定义一个数组pre记录已经落子的位置。因为按行的顺序落子,所以同一行不会出现冲突,行不用检查。因此只用遍历pre数组,检查是否有行冲突和对角线冲突即可。若两个位置在同一对角线,它们行序号之差的绝对值=列序号之差的绝对值。
代码
class Solution {
private List<List<String>> res=new ArrayList<>();
private int[] pre;
boolean isValid(int row,int col){
for(int i=0;i<row;++i)
if(col==pre[i]||Math.abs(row-i)==Math.abs(col-pre[i])) return false;
return true;
}
//ans代表了当前节点的状态
public void backtrack(int cur,int n,List<String> ans){
if(cur==n){
//添加不同元素要用不同的引用!!!
//因此不能直接添加ans
res.add(new ArrayList<>(ans));
return;
}
for(int i=0;i<n;++i){
if(isValid(cur,i)){
pre[cur]=i;
String s=ans.get(cur);
s=s.substring(0,i)+"Q"+s.substring(i+1);
ans.set(cur,s);
backtrack(cur+1,n,ans);
//还原状态
s=s.substring(0,i)+"."+s.substring(i+1);
ans.set(cur,s);
}
}
}
public List<List<String>> solveNQueens(int n) {
//初始化棋盘,所有位置都是'.'
char[] c=new char[n];
Arrays.fill(c,'.');
List<String> list=Collections.nCopies(n,new String(c));
List<String> ans=new ArrayList<>(list);
//pre[i]表示第i行棋子所在的列序号
pre=new int[n];
backtrack(0,n,ans);
return res;
}
}
原题链接:https://leetcode-cn.com/problems/eight-queens-lcci
面试题 08.12. N皇后的更多相关文章
- 新手C#SQLServer在程序里实现语句的学习2018.08.12
从C#中连接到SQL Server数据库,再通过C#编程实现SQL数据库的增删改查. ado.net提供了丰富的数据库操作,这些操作可以分为三个步骤: 第一,使用SqlConnection对象连接数据 ...
- .NET面试题系列[12] - C# 3.0 LINQ的准备工作
"为了使LINQ能够正常工作,代码必须简化到它要求的程度." - Jon Skeet 为了提高园子中诸位兄弟的英语水平,我将重要的术语后面配备了对应的英文. .NET面试题系列目录 ...
- java面试题系列12
1.面向对象的特征有哪些方面 a.抽象: 抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问题,而只是选择其中的一部分,暂时不用部分细节.抽象 ...
- 蓝桥杯试题 基础练习 2n皇后问题以及n皇后问题
在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于 ...
- 免费获得NOD32 半年、1年 激活码-14.08.12到期
地址: http://nod32.ruanmei.com/ 活动时间: 2014年8月6日 - 8月12日(全部送完将提前终止). 活动规则: 1.每台电脑限领1枚NOD32激活码: 2.领到的NOD ...
- Storm(2015.08.12笔记)
2015.08.12Storm 一.Storm简介 Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架. Storm能实现高频数据和大规模数据的实时处理. 官网资料显示s ...
- java面试题08
1.short s1 = 1; s1 = s1 + 1;有什么错? short s1 = 1; s1 += 1;有什么错? short s1 = 1; s1 = s1 + 1;编译时错误.对于shor ...
- 剑指Offer面试题:12.在O(1)时间删除链表结点
一.题目:在O(1)时间删除链表结点 题目:给定单向链表的头指针和一个结点指针,定义一个函数在O(1)时间删除该结点. 原文采用的是C/C++,这里采用C#,节点定义如下: public class ...
- 2018.08.12 bzoj5301: [Cqoi2018]异或序列(前缀和+莫队)
传送门 简单的异或前缀和处理+莫队统计答案. 惊奇的发现无论开不开long long都能跑过... 代码: #include<bits/stdc++.h> #define N 100005 ...
随机推荐
- 关于antd Select 限制选择个数的解决方案
应用场景描述: Select 被form 所包裹,且被getFieldDecorator修饰.所以值的改变应该通过form的setFieldsValue方法. Select模式肯定会是multiple ...
- 7-31 堆栈操作合法性 (20 分) PTA
7-31 堆栈操作合法性 (20 分) 假设以S和X分别表示入栈和出栈操作.如果根据一个仅由S和X构成的序列,对一个空堆栈进行操作,相应操作均可行(如没有出现删除时栈空)且最后状态也是栈空,则称该 ...
- GridView控件使用
增加显示列gridView.Columns.AddVisible("AgentName", "姓名");设置是否为只读gridView1.OptionsBeha ...
- wrap()包裹被选元素的内容
<!doctype html><html><head><meta charset="utf-8"><title>修改代码 ...
- 开源自己编写的半人工标注平台PaddleOCRLabel(.NET Winform版本)
大家好, 我是博客园的老用户了,许久不做.NET技术了,从2013年起,开始从事App技术,写过书,在Linux上搭建区块链,用GO写智能合约,使用nodejs搭建过微服务,用python写过爬虫,写 ...
- Apache网页优化
目录: 一.Apache网页优化概述 二.网页压缩 三.网页缓存 四.隐藏版本信息 五.Apache防盗链 一.Apache网页优化概述 在企业中,部署Apache后只采用默认的配置参数,会引发网站很 ...
- json包中的Marshal&Unmarshal 文档译本
Marshal func Marshal(v interface{})([]byte, error) Marshal returns the JSON encoding of v. Marshal返回 ...
- RocketMQ详解(一)原理概览
专题目录 RocketMQ详解(一)原理概览 RocketMQ详解(二)安装使用详解 RocketMQ详解(三)启动运行原理 RocketMQ详解(四)核心设计原理 RocketMQ详解(五)总结提高 ...
- Markdown公式用法大全
目录 基本语法 两种代码引用方式 插入链接并描述 插入图片 有序列表 无序列表 分割线 表格 如何插入公式 如何输入上下标 如何输入括号和分隔符 如何输入分数 如何输入开方 如何输入省略号 如何输入矢 ...
- phpstoem破解
https://blog.csdn.net/voke_/article/details/78794567