【Java基础】JAVA中优先队列详解
总体介绍
优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素)。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator,类似于C++的仿函数)。
Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。

上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:
leftNo = parentNo*2+1
rightNo = parentNo*2+2
parentNo = (nodeNo-1)/2
通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。
PriorityQueue的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)。
方法剖析
add()和offer()
add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回false。对于PriorityQueue这两个方法其实没什么差别。

新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。
//offer(E e)
public boolean offer(E e) {
if (e == null)//不允许放入null元素
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);//自动扩容
size = i + 1;
if (i == 0)//队列原来为空,这是插入的第一个元素
queue[0] = e;
else
siftUp(i, e);//调整
return true;
}
上述代码中,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。
//siftUp()
private void siftUp(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为:从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。
element()和peek()
element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。

代码也就非常简洁:
//peek()
public E peek() {
if (size == 0)
return null;
return (E) queue[0];//0下标处的那个元素就是最小的那个
}
remove()和poll()
remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。

代码如下:
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];//0下标处的那个元素就是最小的那个
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);//调整
return result;
}
上述代码首先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。
//siftDown()
private void siftDown(int k, E x) {
int half = size >>> 1;
while (k < half) {
//首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标
int child = (k << 1) + 1;//leftNo = parentNo*2+1
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;//然后用c取代原来的值
k = child;
}
queue[k] = x;
}
remove(Object o)
remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况:1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可。此处不再赘述。

具体代码如下:
//remove(Object o)
public boolean remove(Object o) {
//通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标
int i = indexOf(o);
if (i == -1)
return false;
int s = --size;
if (s == i) //情况1
queue[i] = null;
else {
E moved = (E) queue[s];
queue[s] = null;
siftDown(i, moved);//情况2
......
}
return true;
}
注意事项
PriorityQueue 不是线程安全的 ,因此Java提供了PriorityBlockingQueue类,该类实现了BlockingQueue接口以在Java多线程环境中使用。
使用示例
PriorityQueue实现为入队和出队方法提供O(log(n))时间。 让我们来看一个自然排序以及Comparator的PriorityQueue示例。
我们有自定义类Customer ,它不提供任何类型的排序,因此,当我们尝试将其与PriorityQueue一起使用时,应为此提供一个比较器对象。
package com.journaldev.collections;
public class Customer {
private int id;
private String name;
public Customer(int i, String n){
this.id=i;
this.name=n;
}
public int getId() {
return id;
}
public String getName() {
return name;
}
}
我们将使用Java随机数生成来生成随机的客户对象。 对于自然排序,我将使用Integer,它也是一个Java包装器类 。
这是我们的最终测试代码,显示了如何使用PriorityQueue。
package com.journaldev.collections;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Random;
public class PriorityQueueExample {
public static void main(String[] args) {
//natural ordering example of priority queue
Queue<Integer> integerPriorityQueue = new PriorityQueue<>(7);
Random rand = new Random();
for(int i=0;i<7;i++){
integerPriorityQueue.add(new Integer(rand.nextInt(100)));
}
for(int i=0;i<7;i++){
Integer in = integerPriorityQueue.poll();
System.out.println("Processing Integer:"+in);
}
//PriorityQueue example with Comparator
Queue<Customer> customerPriorityQueue = new PriorityQueue<>(7, idComparator);
addDataToQueue(customerPriorityQueue);
pollDataFromQueue(customerPriorityQueue);
}
//Comparator anonymous class implementation
public static Comparator<Customer> idComparator = new Comparator<Customer>(){
@Override
public int compare(Customer c1, Customer c2) {
return (int) (c1.getId() - c2.getId());
}
};
//utility method to add random data to Queue
private static void addDataToQueue(Queue<Customer> customerPriorityQueue) {
Random rand = new Random();
for(int i=0; i<7; i++){
int id = rand.nextInt(100);
customerPriorityQueue.add(new Customer(id, "Pankaj "+id));
}
}
//utility method to poll data from queue
private static void pollDataFromQueue(Queue<Customer> customerPriorityQueue) {
while(true){
Customer cust = customerPriorityQueue.poll();
if(cust == null) break;
System.out.println("Processing Customer with ID="+cust.getId());
}
}
}
请注意,我正在使用java匿名类来实现Comparator接口并创建基于id的比较器。
当我在测试程序上运行时,得到以下输出:
Processing Integer:9
Processing Integer:16
Processing Integer:18
Processing Integer:25
Processing Integer:33
Processing Integer:75
Processing Integer:77
Processing Customer with ID=6
Processing Customer with ID=20
Processing Customer with ID=24
Processing Customer with ID=28
Processing Customer with ID=29
Processing Customer with ID=82
Processing Customer with ID=96
从输出中可以明显看出,最少的元素在首位,并且被首先轮询。 如果在创建customerPriorityQueue时不提供比较器,它将在运行时引发ClassCastException。
Exception in thread "main" java.lang.ClassCastException: com.journaldev.collections.Customer cannot be cast to java.lang.Comparable
at java.util.PriorityQueue.siftUpComparable(PriorityQueue.java:633)
at java.util.PriorityQueue.siftUp(PriorityQueue.java:629)
at java.util.PriorityQueue.offer(PriorityQueue.java:329)
at java.util.PriorityQueue.add(PriorityQueue.java:306)
at com.journaldev.collections.PriorityQueueExample.addDataToQueue(PriorityQueueExample.java:45)
at com.journaldev.collections.PriorityQueueExample.main(PriorityQueueExample.java:25)
【Java基础】JAVA中优先队列详解的更多相关文章
- Java基础-面向接口编程-JDBC详解
Java基础-面向接口编程-JDBC详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.JDBC概念和数据库驱动程序 JDBC(Java Data Base Connectiv ...
- java基础(3)--详解String
java基础(3)--详解String 其实与八大基本数据类型一样,String也是我们日常中使用非常频繁的对象,但知其然更要知其所以然,现在就去阅读源码深入了解一下String类对象,并解决一些我由 ...
- Java基础13:反射详解
本节主要介绍Java反射的原理,使用方法以及相关的技术细节,并且介绍了关于Class类,注解等内容. 具体代码在我的GitHub中可以找到 https://github.com/h2pl/MyTech ...
- 【Java基础】HashMap原理详解
哈希表(hash table) 也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对java集合框架中Has ...
- Java基础(44):ArrayList使用详解
1.什么是ArrayList ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: a.动态的增加和减少元素 b.实现了IColle ...
- Java基础(55):Exception类详解(转)
Java中的异常 Exception java.lang.Exception类是Java中所有异常的直接或间接父类.即Exception类是所有异常的根类. 比如程序: public class Ex ...
- java基础之类与继承 详解
Java:类与继承 对于面向对象的程序设计语言来说,类毫无疑问是其最重要的基础.抽象.封装.继承.多态这四大特性都离不开类,只有存在类,才能体现面向对象编程的特点,今天我们就来了解一些类与继承的相关知 ...
- Java、Android中Math详解
java.math.Math类常用的常量和方法: Math.PI 记录的圆周率 Math.E记录e的常量 Math.abs 求绝对值 Math.sin 正弦函数 Math.asin 反正弦函数 Mat ...
- java基础6 面向对象的详解
本文知识点(目录): 1.1.万物皆对象 1.2.面向对象的概述 1.3.面向对象(java语言)与面向过程(C语言)对比 1.4.面向过程 1.5.对象 1.6.面向对 ...
随机推荐
- uni-app APP端隐藏导航栏自定义按钮
话不多说,上代码 // #ifdef APP-PLUS var webView = this.$mp.page.$getAppWebview(); // 修改buttons webView.setTi ...
- 用Python实现人像动漫化
用Python实现人像动漫化 本文章会教你如何使用Python实现人像动漫化,先看看效果实例: 实现过程如下: 本案例是使用百度的API来实现的,首先需要进入百度AI开放平台注册账号,具体流程就不讲了 ...
- 关于React采坑(憨批)系列---类组件(class MyCom extends React.Component--VM47:9 Uncaught TypeError: Super expression must either be null or a function, not undefined)
今天在学习React中的类组件时,突然给我报错VM47:9 Uncaught TypeError: Super expression must either be null or a function ...
- .net core api 请求实现接口幂等性
简单实现接口幂等性,根据参数的hascode实现: 参数介绍 WaitMillisecond : 请求等待毫秒数 CacheMillisecond:请求结果缓存毫秒数 参数具体使用场景 WaitMi ...
- windows下端口占用
1,netstat -ano | findstr 1235 2,taskkill /pid 9772 /f
- elasticsearch中query_string的隐藏坑
elasticsearch查询中使用filter查询添加query_string格式为: { "query_string": { ...
- Linux下搭建FFmpeg开发调试环境
背景 如果你是一个FFmpeg的使用者,那么绝大部分情况下只需要在你的程序中引用FFmpeg的libav*相关的头文件,然后在编译阶段链接相关的库即可.但是如果你想调试FFmpeg内部相关的逻辑,或者 ...
- Django笔记&教程 3-4 模板继承
Django 自学笔记兼学习教程第3章第4节--模板继承 点击查看教程总目录 在介绍具体的技术之前,先介绍在什么样的场景中,需要使用这样的技术,我觉得这对于新手理解起来很重要. 一般来说,要渲染一个页 ...
- Django笔记&教程 6-2 表单(Form)基础操作
Django 自学笔记兼学习教程第6章第2节--表单(Form)基础操作 点击查看教程总目录 1 - 编写表单类 创建新的表单类的代码,一般写到一个专门的forms.py文件中(一般放在对应的app文 ...
- 一个 Linux 后台程序编程案例分析
Linux 下的一个进程打开一个日志文件,不定期地往该文件里写入日志.此时可以在控制台使用 mv 命令给该日志文件改个名字或者用 rm 命令把这个日志文件删除掉.Linux 下是允许这么干的!对于改日 ...