\(\mathcal{Description}\)

  Link.

  定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarrow u<v\)。求一个对 \(E\) 的染色 \(f\),使得 \(\not\exist \lang v_1,v_2,\cdots,v_{k+1} \rang, |\{f(v_i,v_{i+1})\mid i\in[1,k]\}|=1\),同时最小化 \(f\) 的值域大小。

  \(2\le k<n\le10^3\)。

\(\mathcal{Solution}\)

  设 \(f\) 的值域大小为 \(c\),断言:\(c\ge\lceil\log_k n\rceil\)。

  证明 该结论的等价表述是,若 \(f\) 值域大小为 \(c\),则 \(n\le k^c\)。当 \(c=0\) 时显然成立。接下来对 \(c\) 进行归纳:

  任取一个 \(f\) 值域大小为 \(c\) 的,被合法染色的图 \(G\),并任取某种颜色 \(x\),据此将点集 \(V\) 划分为 \(V_1,V_2,\cdots,V_t\),使得 \(V_i\) 的导出子图中不存在颜色为 \(x\) 的边。这些点集之间的连边颜色全部为 \(x\),所以 \(t\le k\)。而仅考虑某个 \(V_i\) 的导出子图,它至多用 \(c-1\) 中颜色染色,由归纳假设,\(|V_i|\le k^{c-1}\),继而 \(|V|=\sum |V_i|\le k\cdot k^{c-1}=k^c\)。 \(\square\)

  模仿归纳方法得到构造方法:划分点集,将点集之间的边染色,而后递归处理。复杂度上限为 \(\mathcal O(n^2)\)。

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 1e3;
int n, k, mxc, ans[MAXN + 5][MAXN + 5]; inline void solve( const int l, const int r, const int clr ) {
if ( l == r ) return ;
if ( clr > mxc ) mxc = clr;
int s = ( r - l + k ) / k;
for ( int i = l; i <= r; i += s ) {
solve( i, std::min( i + s - 1, r ), clr + 1 );
rep ( u, l, i - 1 ) rep ( v, i, std::min( i + s - 1, r ) ) {
ans[u][v] = clr;
}
}
} int main() {
scanf( "%d %d", &n, &k ); solve( 1, n, 1 );
printf( "%d\n", mxc );
rep ( i, 1, n ) rep ( j, i + 1, n ) printf( "%d ", ans[i][j] );
putchar( '\n' );
return 0;
}

Solution -「CF 1586F」Defender of Childhood Dreams的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  6. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  7. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  8. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

  9. Solution -「CF 487E」Tourists

    \(\mathcal{Description}\)   Link.   维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...

随机推荐

  1. RabbitMQ --- 直连交换机 【 有回调方法,获取消费结果 】

    1.前言 上一随笔详细记录了直连交换机的方法,发送的消息是异步的,如果消息未被消费者消费,那么可以一直存在消息队列中. 那么有没有办法做一个回调,当消息被消费后,被通知消息成功被消费者消费啦? 答案是 ...

  2. SYCOJ1717负二进制

    题目-负二进制 (shiyancang.cn) 进制的实质在于对于进制数的选择,选择不满足的填入当前的位置,然后除掉,继续开始选择.但是对于本题,是负数,但是进制上的数字为正数,所以就要调整,借位,因 ...

  3. SYCOJ2100摆动序列

    题目-摆动序列 (shiyancang.cn) 直接分成两部分,插入即可.只有一个地方不对,那就是符号.两个大的放一个小的,两个小的放一个大的.那么每次的大的放最大的,每次的小的放其次小的,用完就不用 ...

  4. hyperf 如何对AMQP消息进行手动消费?

    转发自白狼栈:查看原文 在使用 hyperf 官方自带的 AMQP 队列时你会发现,不需要我们再额外启动进程对消息进行消费.这是因为默认情况下,使用 @Consumer 注解时,hyperf 会为我们 ...

  5. Java 在PDF中添加工具提示|ToolTip

    本文,将介绍如何通过Java后端程序代码在PDF中创建工具提示.添加工具提示后,当鼠标悬停在页面上的元素时,将显示工具提示内容. 导入jar包 本次程序中使用的是 Free Spire.PDF for ...

  6. Quay v3.5.1 部署踩坑

    官方文档好久没更新了 拿来部署了一个最新的软件 把我坑死了 首先你需要一个podman OR docker 官方用podman 本文同 设置 Postgres 官方推荐数据库 $ mkdir -p $ ...

  7. Linux环境下的Docker的安装和部署、学习-一

    CentOS Docker 安装Docker支持以下的CentOS版本:CentOS 7 (64-bit)CentOS 6.5 (64-bit) 或更高的版本 前提条件目前,CentOS 仅发行版本中 ...

  8. Java传递变量和对象的区别

    传递对象 public class Demo03 { //引用传递:(实际上还是值传递)对于引用数据类型来说,传递的则是地址的副本(对象的地址).但由于地址副本和原来的类似,因此传递过去后形参也只想同 ...

  9. PWA 技术落地!让你的站点(Web)秒变APP(应用程序)

    Web应用方兴未艾,我们已经十分习惯习惯了在电脑上进行以自己的工作,而随着众多功能强大的在线网站,我们的Windows的桌面也不再拥挤着各种快捷方式:不光是PC端,在移动端我们也不再在浩如烟海的应用市 ...

  10. 轻量级orm框架——gzero指南

    开发过web系统人一定对大量的curd不陌生,为了提高效率我们通常会使用一些orm框架做辅助,而不会直接操作数据库.但是现有的orm框架往往有两个通病(各种语言的都一样):1. API复杂:即使是有经 ...