Content

给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数。

数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\leqslant 10^4\)。

Solution

你可能需要在做这题目前了解一下约数个数定理。何谓约数个数定理?

设一个数 \(x\) 的个数可以分解为若干个质因数相乘的积,即:

\[x=\prod\limits_{i=1}^k p_i^{a_i}
\]

那么 \(x\) 的约数个数 \(f(x)\) 有一个这样的式子:

\[f(x)=\prod\limits_{i=1}^k(a_i+1)
\]

如何证明?很简单,我们由约数定义可知,\(p_1^{a_1}\) 的约数有:\(p_1^0,p_1^1, p_1^2,\dots,p_1^{a_1}\),共 \(a_1+1\) 个。同理 \(p_2^{a_2}\) 的约数有 \(a_2+1\) 个……以此类推,\(p_k^{a_k}\) 的约数有 \(a_k+1\) 个。因此,由乘法原理可知,\(x\) 的约数个数就是 \((a_1+1)(a_2+1)\dots(a_k+1)=\prod\limits_{i=1}^k(a_i+1)\)。

那么思路就非常清晰明了了:

  1. 预处理出 \(\sqrt{10^{10}}\) 以内的所有质数,可以用埃氏筛也可以用线性筛。
  2. 注意到 \(r-l\leqslant 10^4\),因此我们考虑直接从 \(l\) 到 \(r\) 枚举每一个数。
  3. 枚举每一个数时,我们枚举每一个质数,一旦发现这个质数是当前枚举到的数的因子,我们就不断地将当前枚举的数除以这个质因子,直到这个质数不再是当前述的因子为止。
  4. 设我们除了 \(num\) 次,然后我们往当前枚举的数的约数个数(初始化为 \(1\))去乘 \(num+1\)。当前数的质因子分解完了以后再和当前的答案比较,并更新答案。

Code

namespace Solution {
int cnt, isprime[100007], prime[100007]; iv ai_prime() {
F(int, i, 2, 100000) isprime[i] = 1;
F(int, i, 2, 100000) if(isprime[i]) Fo(int, j, i * 2, 100000, i) isprime[j] = 0;
F(int, i, 2, 100000) if(isprime[i]) prime[++cnt] = i;
} iv Main() {
ai_prime();
MT {
ll l = Rll, r = Rll, ans = 0, res = l;
F(ll, i, l, r) {
ll p = i, num = 1;
for(int j = 1; j <= cnt && prime[j] <= p; ++j) {
ll t = 0;
while(prime[j] && !(p % prime[j])) p /= prime[j], t++;
num *= (t + 1);
}
if(num > ans) res = i, ans = num;
}
printf("Between %lld and %lld, %lld has a maximum of %lld divisors.\n", l, r, res, ans);
}
return;
}
}

UVA294 约数 Divisors 题解的更多相关文章

  1. 洛谷P2424 约数和 题解

    题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定 ...

  2. P1403 [AHOI2005]约数研究 题解

    转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...

  3. 【SP26073】DIVCNT1 - Counting Divisors 题解

    题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\ ...

  4. CF893B Beautiful Divisors 题解

    Content 给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\). 数据范围:\(1\leqslant n\leqsl ...

  5. Yaroslav and Divisors

    Codeforces Round #182 (Div. 1) D:http://codeforces.com/contest/301/problem/D 题意:给一个1-n,n个数的序列,然后查询一个 ...

  6. 【BZOJ3994】约数个数和(莫比乌斯反演)

    [BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...

  7. BZOJ1968 [Ahoi2005]COMMON 约数研究 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F( ...

  8. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  9. 「loj3058」「hnoi2019」白兔之舞

    题意 有一个\((L+1)*n\) 的网格图,初始时白兔在\((0,X)\) , 每次可以向横坐标递增,纵坐标随意的位置移动,两个位置之间的路径条数只取决于纵坐标,用\(w(i,j)\) 表示,如果要 ...

随机推荐

  1. docker创建mongodb并且测试代码

    mongodb docker 安装mongodb-创建用户  docker run -itd --name mongo -p 27017:27017 mongo --auth 进入数据库添加密码   ...

  2. vscode 整理————开篇之力(一)

    前言 作为一个开发为什么对一个vscode 这样的工具进行整理呢,因为vscode 非常的常用,它包含很多编辑器共同有的特征,这些特征帮助我们了解其他编辑器. 这里可能就有人疑问了,我们需要去非常的关 ...

  3. Mac Maven 安装及配置

    一.下载 打开 Maven 官方下载页面:https://maven.apache.org/download.cgi#,点击下载链接即可开始下载:     以 Maven 3.8.4 为例,解压后可以 ...

  4. 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)

    题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...

  5. LVS-原理

    一. 集群的概念 服务器集群简称集群是一种服务器系统,它通过一组松散集成的服务器软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台服务器.集群系统中的单个服务器通常称 ...

  6. OOM机制

    Linux内核根据应用程序的要求分配内存,通常来说应用程序分配了内存但是并没有实际全部使用,为了提高性能,这部分没用的内存可以留作它用,这部分内存是属于每个进程的,内核直接回收利用的话比较麻烦,所以内 ...

  7. 学习java的第九天

    一.今日收获 1.java完全学习手册第二章程序流程控制中的顺序结构与选择结构 2.学习了java中选择的一些语句和关键词 二.今日问题 1.例题验证有错的情况 2.哔哩哔哩教学视频的一些术语不太理解 ...

  8. go 函数进阶

    目录 回调函数和闭包 高阶函数示例 回调函数(sort.SliceStable) 闭包 最佳闭包实例 回调函数和闭包 当函数具备以下两种特性的时候,就可以称之为高阶函数(high order func ...

  9. Hbase(二)【shell操作】

    目录 一.基础操作 1.进入shell命令行 2.帮助查看命令 二.命名空间操作 1.创建namespace 2.查看namespace 3.删除命名空间 三.表操作 1.查看所有表 2.创建表 3. ...

  10. JavaScript的数据结构快速学-链表的实现

    1-单项链表 function LinkedList() { let Node = function(element) { // 辅助类,表示要添加到链表中的项 this.element = elem ...