3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 82  Solved: 49
[Submit][Status][Discuss]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either 'P' 
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: 'Q' if the cows are lining 
up and asking Farmer John for their line number or 'P' if Farmer 
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is 'P', 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was 'P', then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

 

Source

Silver

题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)

本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
list:array[..] of int64;
i,j,k,l,m,n:longint;
a1,a2,a3,a4,a5:int64;
a,b,c,d:array[..] of int64;
ch:char;
procedure add(x:longint);
begin
if x= then exit;
while x<=n do
begin
inc(c[x]);
inc(x,x and -x);
end;
end;
function sum(x:longint):int64;
begin
if x= then exit();
sum:=;
while x> do
begin
inc(sum,c[x]);
dec(x,x and -x)
end;
end;
begin
list[]:=;
for i:= to do list[i]:=list[i-]*i;
readln(n,m);
for i:= to m do
begin
readln(ch);
case upcase(ch) of
'P':begin
readln(a1);
a1:=a1-;
for j:= to n do
begin
a[j]:=a1 div list[n-j];
a1:=a1 mod list[n-j];
end;
fillchar(c,sizeof(c),);
for j:= to n do
begin
l:=;
for k:= to n do
begin
if c[k]= then continue;
if a[j]=l then
begin
d[j]:=k;
c[k]:=;
end;
inc(l);
end;
end;
for j:= to n do if j<n then write(d[j],' ') else writeln(d[j]);
end;
'Q':begin
for j:= to n do read(b[j]);
readln;a1:=;
fillchar(c,sizeof(c),);
for j:= to n do
begin
add(b[j]);
inc(a1,(b[j]-sum(b[j]))*list[n-j]);
end;
writeln(a1+);
end;
end;
end;
end.

3301: [USACO2011 Feb] Cow Line的更多相关文章

  1. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  2. [BZOJ] 3301: [USACO2011 Feb] Cow Line

    康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...

  3. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  4. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  5. 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...

  6. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  7. 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字

    2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 97 ...

  8. BZOJ3300: [USACO2011 Feb]Best Parenthesis

    3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 42 ...

  9. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

随机推荐

  1. 支付宝开发中return_url和notify_url的区别分析

    在处理支付宝业务中出现过这样的问题,付费完成后,在支付宝跳转到商家指定页面时,订单状态已经更新,通过调试发现是支付宝先通知notify_url,完成了订单状态. 支付宝return_url和notif ...

  2. java程序的工作原理

    Sun公司设计java语言的目标是让Java程序不必经过修改就可以在各种各样的计算机(包括PC机和工作站)上运行.为了实现这一目标,Sun公司提供了一阵Java虚拟机(Java Virtual Mac ...

  3. Cocos2d-x 多分辨率支持

    最近遇到多分辨率支持问题,所以查了一些资料.将一些收获共享一下,以便自己和其他需要的朋友日后参考. 如果我要建立一个cocos2d-x项目,我的目标是支持iphone3G( 480, 320 ),ip ...

  4. 清理微信浏览网站的缓存,Cookie

    微信官方说明是取消关注,但是开发中发现取消关注缓存还是存在! 解决方法如下: 方法一: 用微信内置浏览器打开这个网页debugx5.qq.com ,就会有清除缓存的选项,如下图 方法二: 如果你用An ...

  5. hadoop在windows下安装运行

    1.下载windows环境下编译的hadoop-2.7.2.x64win.zip 2.解压至D:\BigData\hadoop-2.7.2 3.修改D:\BigData\hadoop-2.7.2\et ...

  6. 游戏音频技术备忘 (三) 集成Wwise到Unreal Engine

    当前受众较广的商业游戏引擎有 Unreal Engine.Unity.cocos2d-x等,在音频领域的第三方中间件则有Wwise.FMOD.Criware等,言多且烦,我们首先集成Wwise到 Un ...

  7. Python自然语言处理学习笔记之性别识别

    从今天起开始写自然语言处理的实践用法,今天学了文本分类,并没用什么创新的东西,只是把学到的知识点复习一下 性别识别(根据给定的名字确定性别) 第一步是创建一个特征提取函数(feature extrac ...

  8. MVC View显示详解(RenderBody,RenderPage,RenderSection,Partial)

    一.Views文件夹 -> Shared文件夹下的 _Layout.cshtml 母版页 @RenderBody 当创建基于_Layout.cshtml布局页面的视图时,视图的内容会和布局页面合 ...

  9. Mrc.EOF

    Mrc 是我们定义的一个变量,用来存放数据等同于 ADODB.Recordset而eof 是mrc也就是recordset的一个属性. 通常我们在程序中编写代码来检验BOF与EOF属性,从而得知目前指 ...

  10. Orcale 之基本术语二

    表空间 表空间是 Orcale 数据库最大的逻辑结构.表空间就是一个或者多个数据文件的集合.所有的数据文件都被逻辑的存放在表空间中. 一个数据库包括 SYSTEM.SYSAUX和TMP三个默认表空间, ...