3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 82  Solved: 49
[Submit][Status][Discuss]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either 'P' 
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: 'Q' if the cows are lining 
up and asking Farmer John for their line number or 'P' if Farmer 
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is 'P', 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was 'P', then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

 

Source

Silver

题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)

本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
list:array[..] of int64;
i,j,k,l,m,n:longint;
a1,a2,a3,a4,a5:int64;
a,b,c,d:array[..] of int64;
ch:char;
procedure add(x:longint);
begin
if x= then exit;
while x<=n do
begin
inc(c[x]);
inc(x,x and -x);
end;
end;
function sum(x:longint):int64;
begin
if x= then exit();
sum:=;
while x> do
begin
inc(sum,c[x]);
dec(x,x and -x)
end;
end;
begin
list[]:=;
for i:= to do list[i]:=list[i-]*i;
readln(n,m);
for i:= to m do
begin
readln(ch);
case upcase(ch) of
'P':begin
readln(a1);
a1:=a1-;
for j:= to n do
begin
a[j]:=a1 div list[n-j];
a1:=a1 mod list[n-j];
end;
fillchar(c,sizeof(c),);
for j:= to n do
begin
l:=;
for k:= to n do
begin
if c[k]= then continue;
if a[j]=l then
begin
d[j]:=k;
c[k]:=;
end;
inc(l);
end;
end;
for j:= to n do if j<n then write(d[j],' ') else writeln(d[j]);
end;
'Q':begin
for j:= to n do read(b[j]);
readln;a1:=;
fillchar(c,sizeof(c),);
for j:= to n do
begin
add(b[j]);
inc(a1,(b[j]-sum(b[j]))*list[n-j]);
end;
writeln(a1+);
end;
end;
end;
end.

3301: [USACO2011 Feb] Cow Line的更多相关文章

  1. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  2. [BZOJ] 3301: [USACO2011 Feb] Cow Line

    康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...

  3. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  4. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  5. 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...

  6. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  7. 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字

    2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 97 ...

  8. BZOJ3300: [USACO2011 Feb]Best Parenthesis

    3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 42 ...

  9. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

随机推荐

  1. MyBatis 一对一关联查询

    xml文件: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC & ...

  2. Flex移动皮肤开发(三)

    范例文件 mobile-skinning-part3 在关于创建Flex移动皮肤系列文章的第二部分里,我们讨论了屏幕密度(DPI)对组件皮肤以及移动应用布局所带来的影响. 我还展示了如何使用缩放应用, ...

  3. Canvas arcTo绘制圆弧

    arcTo(x1,y1,x2,y2,r); 当前点x0,y0;圆弧与(x0,y0-x1,y1)相切,与(x1,y1-x2,y2)相切: <!DOCTYPE html> <html l ...

  4. 递归编译的Makefile的实现

    最近写了一个递归Makefile,目的是既可以实现子模块的单独编译,也可以不做任何修改就和整个程序的整体进行无缝衔接的编译.具体的思路是借助第三方文件,将子模块编译好的.o文件的路径自动写到confi ...

  5. CMD修改IP地址

    在操作系统下,我们可以使用"本地连接"的属性来修改IP地址,但是如果我们要在多个IP地址之间切换,使用这种方法未免过于麻烦.我们可以使用NETSH命令来添加,相当简便.使用DOS修 ...

  6. Python 日志模块实例

    python 打印对象的所有属性值: def prn_obj(obj):     print '\n'.join(['%s:%s' % item for item in obj.__dict__.it ...

  7. 微软Visual Studio二十周年:VS2017于3月7日发布

    二十年前的今天,微软正式发布Visual Studio 97.如今二十年已经过去,微软宣布全新的Visual Studio 2017即将在美国当地时间3月7日正式发布. VS97是Visual Stu ...

  8. iOS开发常用

    http://blog.csdn.net/u013043666/article/details/51353386 1.打电话 第一种 NSString *telNum = model.contact; ...

  9. linux上安装Oracle 11g R2 标准版 64位

    一.Oracle 安装前的准备 检查一下包,必须全部安装: binutils-2.20.51.0.2-5.43.el6.x86_64 compat-libstdc++-296-2.96-144.el6 ...

  10. Dynamics CRM 2015-Form之控制Ribbon Button

    在上一篇中,我用一个例子,简单介绍了如何添加Ribbon Button,以及如何理解RibbonDiffXml,对这方面还不清楚的,可以先看看这篇博文:Dynamics CRM 2015-Form之添 ...