3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 82  Solved: 49
[Submit][Status][Discuss]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing 
yet another one of their crazy games with Farmer John. The cows 
will arrange themselves in a line and ask Farmer John what their 
line number is. In return, Farmer John can give them a line number 
and the cows must rearrange themselves into that line. 
A line number is assigned by numbering all the permutations of the 
line in lexicographic order.

Consider this example: 
Farmer John has 5 cows and gives them the line number of 3. 
The permutations of the line in ascending lexicographic order: 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and 
ask Farmer John what their line number is.

Continuing with the list: 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game. 
They have K (1 <= K <= 10,000) queries that they need help with. 
Query i has two parts: C_i will be the command, which is either 'P' 
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer 
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John 
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct 
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the 
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。 
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。 
例如:有5头牛 
1st: 1 2 3 4 5 
2nd: 1 2 3 5 4 
3rd: 1 2 4 3 5 
4th : 1 2 4 5 3 
5th : 1 2 5 3 4 
…… 
现在,已知N头牛的排列方式,求这种排列方式的行号。 
或者已知行号,求牛的排列方式。 
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。 
如果,行号是3,则排列方式为1 2 4 3 5 
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。 
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K 
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query. 
Line 2*i will contain just one character: 'Q' if the cows are lining 
up and asking Farmer John for their line number or 'P' if Farmer 
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated 
integers B_ij which represent the cow line. If the line 2*i is 'P', 
then line 2*i+1 will contain a single integer A_i which is the line 
number to solve for.

第1行:N和K 
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。 
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号; 
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a 
single integer, which is the line number of the cow line in line 
2*i+1.

If line 2*i of the input was 'P', then this line will contain N 
space separated integers giving the cow line of the number in line 
2*i+1. 
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

 

Source

Silver

题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)

本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
list:array[..] of int64;
i,j,k,l,m,n:longint;
a1,a2,a3,a4,a5:int64;
a,b,c,d:array[..] of int64;
ch:char;
procedure add(x:longint);
begin
if x= then exit;
while x<=n do
begin
inc(c[x]);
inc(x,x and -x);
end;
end;
function sum(x:longint):int64;
begin
if x= then exit();
sum:=;
while x> do
begin
inc(sum,c[x]);
dec(x,x and -x)
end;
end;
begin
list[]:=;
for i:= to do list[i]:=list[i-]*i;
readln(n,m);
for i:= to m do
begin
readln(ch);
case upcase(ch) of
'P':begin
readln(a1);
a1:=a1-;
for j:= to n do
begin
a[j]:=a1 div list[n-j];
a1:=a1 mod list[n-j];
end;
fillchar(c,sizeof(c),);
for j:= to n do
begin
l:=;
for k:= to n do
begin
if c[k]= then continue;
if a[j]=l then
begin
d[j]:=k;
c[k]:=;
end;
inc(l);
end;
end;
for j:= to n do if j<n then write(d[j],' ') else writeln(d[j]);
end;
'Q':begin
for j:= to n do read(b[j]);
readln;a1:=;
fillchar(c,sizeof(c),);
for j:= to n do
begin
add(b[j]);
inc(a1,(b[j]-sum(b[j]))*list[n-j]);
end;
writeln(a1+);
end;
end;
end;
end.

3301: [USACO2011 Feb] Cow Line的更多相关文章

  1. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  2. [BZOJ] 3301: [USACO2011 Feb] Cow Line

    康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...

  3. BZOJ3301: [USACO2011 Feb] Cow Line

    3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 67  Solved: 39[Submit ...

  4. [USACO2011 Feb] Cow Line

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...

  5. 【BZOJ】【3301】【USACO2011 Feb】Cow Line

    康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...

  6. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  7. 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字

    2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 138  Solved: 97 ...

  8. BZOJ3300: [USACO2011 Feb]Best Parenthesis

    3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 42 ...

  9. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

随机推荐

  1. 我用Cocos2d-x模拟《Love Live!学院偶像祭》的Live场景(二)

    上一章分析了Live场景中各个元素的作用,这一章开始来分析最关键的部分——打击物件的实现. 上一章放出的视频很模糊,先来看一个清晰版的复习一下:http://www.bilibili.com/vide ...

  2. Docker环境中部署DzzOffice 1.2.5.2

    整体思路: 1.官方获取mysql.php+apache镜像: 2.基于php+apache,创建DzzOffice镜像: 3.启动mysql镜像: 4.启动DzzOffice镜像,链接mysql镜像 ...

  3. 锁 和 CopyOnWrite的实现

    1.普通锁 只有lock功能, Java实现:ReentrantLock lock = new ReentrantLock(); lock和unlock: lock.lock(); lock.unlo ...

  4. C#进阶系列——使用Advanced Installer制作IIS安装包(一:配置IIS和Web.config)

    前言:大过年的,写篇文章不容易,还是给自己点个赞~~年前找了下.net安装包的制作方法,发现Visual Studio自带的制作工具使用起来非常麻烦,需要单独下载安装包,并且什么激活认证等等屁事相当麻 ...

  5. js精要之构造函数

    // 枚举对象 var obj = {} obj.name = "bob"; obj.age = "; obj.sex = "boy"; consol ...

  6. 02月刊(上) | 微信小程序

    * { margin: 0; padding: 0 } .con { width: 802px; margin: 0 auto; text-align: center; position: inher ...

  7. uml的图与代码的转换——类图

    Uml是我们经常使用的统一建模语言或称标准建模语言.它的图是如何和代码对应的呢?下面我们就来就这个问题讨论一下: 首先是类:uml中的类图是这样的 在这个图中,我们可以看出,这个类图总共分了三行,第一 ...

  8. 设置/修改wampserverd默认项目地址

    打开WampServer安装目录下bin\apache\Apache2.4.4\conf\文件夹打开httpd.conf 首先我们安装完wampserver后一般默认的项目存放地址如下: " ...

  9. CSS之浏览器默认样式设置

    今天自己写css样式时,其中用到了<ul>标签,设置了一系列效果后运行,发现位置与设置有出入.chrome上打开检查项,发现<ul>标签的styles底部多了以下一段: ul, ...

  10. HttpClient构造文件上传

    在项目中我们有时候需要使用到其他第三方的api,而有些api要求我们上传文件,search一下,下面将结果记录一下喽! 含义 ENCTYPE="multipart/form-data&quo ...