今天在看python算法的时候,看到一篇关于python的小技巧。瞬间萌比了,原来python也可以这样玩,太神奇了。萌比的是原来这么简单的东西自己都不知道,虽然会写。废话不多说了,开始上菜。

1、拆箱

>>> a,b,c = 1,2,3
>>> a,b,c
(1, 2, 3)
>>> a,b,c = [1,2,3]
>>> a,b,c
(1, 2, 3)
>>> a,b,c = (2 * i + 1 for i in range(3))
>>> a,b,c
(1, 3, 5)
>>> a,(b,c),d = [1,(2,3),4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

2、拆箱变量交换

>>> a,b,c = 1,2,3
>>> a,b,c = b,c,a
>>> a,b,c
(2, 3, 1)

3、扩展拆箱(只兼容python3)

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

4、负数索引

>>> a = [1,2,3,4,5,6,7,8,9,0]
>>> a[-1]
0
>>> a[-3]
8

5、切割列表

>>> a = [1,2,3,4,5,6,7,8,9,0]
>>> a[2:6]
[3, 4, 5, 6]

6、负数索引切割列表

>>> a = [1,2,3,4,5,6,7,8,9,]
>>> a[-4:-3]
[6]
>>> a[-4:-7]
[]
>>> a[-7:-4]
[3, 4, 5]

7、指定不长切割列表

>>> a=[1,2,3,4,5,6,7,8,9,0]
>>> a[::3]
[1, 4, 7, 0]
>>> a[::2]
[1, 3, 5, 7, 9]
>>> a[2:8:2]
[3, 5, 7]
>>> a[:2:8]
[1]

8、负数步长切割列表

>>> a=[1,2,3,4,5,6,7,8,9,10,11,12,13,14]
>>> a[::-3]
[14, 11, 8, 5, 2]
>>> a[::-5]
[14, 9, 4]
>>> a[-2:-3:-4]
[13]

9、列表切割赋值

>>> a=[1,2,3,4,5]
>>> a[2:3]
[3]
>>> a[2:3]=[0,0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1]
[]
>>> a[1:1]=[8,9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1]
[8, 9, 2, 0, 0, 4]
>>> a[1:-1]=[]
>>> a
[1, 5]

10、命名列表切割方式

>>> a=[1,2,3,4,5]
>>> LASTTHREE = slice(-3,None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

11、列表以及迭代器的压缩和解压

>>> a=[1,2,3,4,5]
>>> b=['a', 'b', 'c']
>>> z=zip(a,b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

12、列表相邻元素压缩器

>>> a=[1,2,3,4,5]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4)]
>>> a=[1,2,3,4,5,6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent=lambda a, k:zip(*([iter(a)] * k))
>>> group_adjacent(a,3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a,2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a,1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]
>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent=lambda a, k:zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

13、在列表中用压缩器和迭代器滑动取值窗口

>>> def n_grams(a,n):
... z=[iter(a[i:]) for i in range(n)]
... return zip(*z)
...
>>> a=[1,2,3,4,5,6,7,8,9]
>>> n_grams(a,3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8), (7, 8, 9)]
>>> n_grams(a,2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
>>> n_grams(a,4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7), (5, 6, 7, 8), (6, 7, 8, 9)]

14、用压缩器反转字典

>>> m={'a':1, 'b':2,'c':3,'d':4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi=dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15、列表展开

>>> import itertools
>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
>>> sum(a, [])
[1, 2, 3, 4, 5, 6]
>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]
>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]
>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]

16、生成器表达式

>>> g=(x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

17、字典推导

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
>>> m = {x: 'B' + str(x) for x in range(10)}
>>> m
{0: 'B0', 1: 'B1', 2: 'B2', 3: 'B3', 4: 'B4', 5: 'B5', 6: 'B6', 7: 'B7', 8: 'B8', 9: 'B9'}

18、用字典推导反转字典

>>> m={'a':1,'b':2,'c':3,'d':4}
>>> m
{'a': 1, 'c': 3, 'b': 2, 'd': 4}
>>> {v:k for k,v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19、命名元组

>>> import collections
>>> point = collections.namedtuple('point', ['x', 'y'])
>>> p = point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

20、继承命名元组

>>> import collections
>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
... __slots__ =()
... def __add__(self, other):
... return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
PointBase(x=3.0, y=5.0)

21、操作集合

>>> A = {1, 2, 3, 4}
>>> A
set([1, 2, 3, 4])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3, 4])
>>> A - B
set([1, 2])
>>> B - A
set([5, 6, 7])
>>> A ^ B
set([1, 2, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

22、操作多重集合

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

23、统计在可迭代器中最常出现的元素

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(2)
[(3, 4), (1, 2)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

24、两端都可操作的队列

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

25、有最大长度的双端队列

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
... last_three.append(i)
... print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

26、可排序词典

>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27、默认词典

>>> m = dict()
>>> m['a']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m['b']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

28、默认字典的简单树状表达

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root['menu']['id'] = 'file'
>>> root['menu']['value'] = 'File'
>>> root['menu']['menuitems']['new']['value'] = 'New'
>>> root['menu']['menuitems']['new']['onclick'] = 'new();'
>>> root['menu']['menuitems']['open']['value'] = 'Open'
>>> root['menu']['menuitems']['open']['onclick'] = 'open();'
>>> root['menu']['menuitems']['close']['value'] = 'Close'
>>> root['menu']['menuitems']['close']['onclick'] = 'close();'
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
"menu": {
"id": "file",
"menuitems": {
"close": {
"onclick": "close();",
"value": "Close"
},
"new": {
"onclick": "new();",
"value": "New"
},
"open": {
"onclick": "open();",
"value": "Open"
}
},
"value": "File"
}
}

29、对象到唯一计数的映射

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1
>>> value_to_numeric_map['c']
2
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1

30、最大和最小的几个列表元素

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

31、两个列表的笛卡尔积

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
... print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

32、列表组合和列表元素替代组合

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
... print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
... print ''.join(str(x) for x in c)
...
11
12
13
22
23
33

33、列表元素排列组合

>>> for p in itertools.permutations([1, 2, 3, 4]):
... print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

34、可链接迭代器

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
... print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
... print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

35、根据文件指定列类聚

>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
... data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
... >>> print_data(data)
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none >>> data.sort(key=lambda r: r[-1])
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
... print '-----------'
... print 'Group: ' + value
... print_data(group)
...
-----------
Group: hard
young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
presbyopic myope yes normal hard
-----------
Group: none
young myope no reduced none
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
-----------
Group: soft
young myope no normal soft
young hypermetrope no normal soft
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft
presbyopic hypermetrope no normal soft

 尊重劳动者的知识产权,请打上出处:http://python.jobbole.com/63320/

让你瞬间萌比的35个python小技巧的更多相关文章

  1. 程序员都会的 35 个 jQuery 小技巧

    收集的35个 jQuery 小技巧/代码片段,可以帮你快速开发. 1. 禁止右键点击 $(document).ready(function(){ $(document).bind("cont ...

  2. (网页)人人都会的35个Jquery小技巧

    转自CSDN: 收集的35个 jQuery 小技巧/代码片段,可以帮你快速开发. 1. 禁止右键点击 $(document).ready(function(){ $(document).bind(&q ...

  3. 每个程序员都会的 35 个 jQuery 小技巧

    1. 禁止右键点击 $(document).ready(function(){ $(document).bind("contextmenu",function(e){ return ...

  4. 每个程序员都会的35个jQuery小技巧!

    1. 禁止右键点击$(document).ready(function(){ $(document).bind("contextmenu",function(e){ return ...

  5. 转载--web前端35个jQuery小技巧!

    1. 禁止右键点击$(document).ready(function(){    $(document).bind("contextmenu",function(e){     ...

  6. Web前端的35个jQuery小技巧

    1. 禁止右键点击 $(document).ready(function(){     $(document).bind("contextmenu",function(e){   ...

  7. 35个jQuery小技巧(转)

    1. 禁止右键点击$(document).ready(function(){    $(document).bind("contextmenu",function(e){     ...

  8. 35个jQuery小技巧!

    1. 禁止右键点击$(document).ready(function(){    $(document).bind("contextmenu",function(e){     ...

  9. 35 个 jQuery 小技巧

    1. 禁止右键点击 $(document).ready(function(){ $(document).bind("contextmenu",function(e){ return ...

随机推荐

  1. C# 泛型 Func<object, string, bool> filter

    Func<object, string, bool>是泛型,你可以先把他看成一个普通类型,比如stringpublic class Func{ } // 自定义个普通类. Func fil ...

  2. java泛型操作复习,以及讲解在android中使用的场景

    android使用泛型的地方很多,比如集成自BaseAdapter实现封装的Adapter,对常用操作进行封装,但是需要对传进来的数据进行处理,此时就使用到泛型,示例如下: public abstra ...

  3. control

    group:多个脚本之间按照独立设置模式跑,各个脚本可以单独设置虚拟用户.运行时间等 scenario:多个脚本之间按照相同的模式跑,将总的虚拟用户数按照一定的比例分配给各个脚本 ---------- ...

  4. oracle 11g dblink配置

    关于DBLINK的概念在本文中不再赘述,本文主要介绍DBLINK的创建. 1.创建环境描述 本文将在两台操作系统为红帽5.5版本.装有Oracle 11g的虚拟机中进行DBLINK的创建以及测试工作. ...

  5. 关于input在li列表中居中显示

    input属于置换元素(replaced element),置换元素主要是指img,input,textarea,select,object等这类默认就有CSS格式化外表范围的元素,这些元素的垂直居中 ...

  6. OpenCV2.x自学笔记——固定阈值

    threshold( const CvArr* src,  CvArr* dst,  double threshold,  double max_value,  int threshold_type) ...

  7. Zeppelin使用spark解释器

    Zeppelin为0.5.6 Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用. 使用其他的spark集群在yarn模式下. 配置: vi zeppelin ...

  8. CevaEclipse - 常用设置

    1. 往工程里面添加在硬盘上已有的文件 File -> Import.. -> General -> File System From directory Browse... 勾选需 ...

  9. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题四 最短路练习 POJ 3259 Wormholes

    SPFA求负环 模板题 记得每组处理之前clear vector /* *********************************************** Author :Sun Yuef ...

  10. CreateProcess注意的几个地方

    1.CreateProcess失败,GetLastError返回998,应该是最后两个参数没有初始化导致的. 2.要使外部程序隐藏窗口运行,需要将STARTUPINFO的dwFlags指定为START ...