UVA12304 2D Geometry 110 in 1! 计算几何
计算几何: 堆几何模版就能够了。
。
。。
Description ![]() Problem E2D Geometry 110 in 1!This is a collection of 110 (in binary) 2D geometry problems. CircumscribedCircle x1 y1 x2 y2 x3 y3 Find out the circumscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the InscribedCircle x1 y1 x2 y2 x3 y3 Find out the inscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius. TangentLineThroughPoint xc yc r xp yp Find out the list of tangent lines of circle centered (xc,yc) with radius r that pass through point (xp,yp). Each tangent line is formatted as a single real number "angle" (in degrees), the angle of the line
Find out the list of circles passing through point (xp, yp) that is tangent to a line (x1,y1)-(x2,y2) with radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles tangent to two non-parallel lines (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4), having radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles externally tangent to two disjoint circles (x1,y1,r1) and (x2,y2,r2), having radius r. By "externally" we mean it should not enclose the two given circles. Each circle is formatted For each line described above, the two endpoints will not be equal. When formatting a list of real numbers, the numbers should be sorted in increasing order; when formatting a list of (x,y) pairs, the pairs InputThere will be at most 1000 sub-problems, one in each line, formatted as above. The coordinates will be integers with absolute value not greater than 1000. The input is terminated by end of file (EOF). OutputFor each input line, print out your answer formatted as stated in the problem description. Each number in the output should be rounded to six digits after the decimal point. Note that the list should be enclosed Sample InputCircumscribedCircle 0 0 20 1 8 17 Output for the Sample Input(9.734940,5.801205,11.332389) Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG Lovers Special Thanks: Di Tang and Yi Chen Source
Root :: Prominent Problemsetters :: Rujia Liu
Root :: Rujia Liu's Presents :: Present 4: Dedicated to Geometry and CG Lovers Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D :: option=com_onlinejudge&Itemid=8&category=528" style="color:blue; text-decoration:none">Examples |
![]() |
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector> using namespace std; const double eps=1e-6; int dcmp(double x){if(fabs(x)<eps) return 0; return (x<0)?-1:1;} struct Point
{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){};
}; Point operator+(Point A,Point B) {return Point(A.x+B.x,A.y+B.y);}
Point operator-(Point A,Point B) {return Point(A.x-B.x,A.y-B.y);}
Point operator*(Point A,double p) {return Point(A.x*p,A.y*p);}
Point operator/(Point A,double p) {return Point(A.x/p,A.y/p);} bool operator<(const Point&a,const Point&b){return a.x<b.x||(a.x==b.x&&a.y<b.y);} bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Dot(Point A,Point B) {return A.x*B.x+A.y*B.y;}
double Length(Point A) {return sqrt(Dot(A,A));}
double Angle(Point A,Point B) {return acos(Dot(A,B)/Length(A)/Length(B));}
double Angle(Point v) {return atan2(v.y,v.x);}
double Cross(Point A,Point B) {return A.x*B.y-A.y*B.x;} /**Cross
P*Q > 0 P在Q的顺时针方向
P*Q < 0 P在Q的逆时针方向
P*Q = 0 PQ共线
*/ Point Horunit(Point x) {return x/Length(x);}///单位向量
Point Verunit(Point x) {return Point(-x.y,x.x)/Length(x);}///单位法向量 Point Rotate(Point A,double rad)///逆时针旋转
{
return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} double Area2(const Point A,const Point B,const Point C)
{
return Cross(B-A,C-A);
} /// 过两点p1, p2的直线一般方程ax+by+c=0 (x2-x1)(y-y1) = (y2-y1)(x-x1)
void getLineGeneralEquation(const Point& p1, const Point& p2, double& a, double&b, double &c)
{
a = p2.y-p1.y;
b = p1.x-p2.x;
c = -a*p1.x - b*p1.y;
} ///P+t*v Q+w*t的焦点
Point GetLineIntersection(Point P,Point v,Point Q,Point w)
{
Point u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} ///点到直线距离
double DistanceToLine(Point P,Point A,Point B)
{
Point v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
} ///点到线段距离
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B) return Length(P-A);
Point v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} ///点到直线投影
Point GetLineProjection(Point P,Point A,Point B)
{
Point v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} ///推断规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
} ///一个点是否在直线端点上
bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
} ///多边形有向面积
double PolygonArea(Point* p,int n)
{
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} ///有向直线
struct Line
{
Point p;
Point v;
double ang;
Line(Point _p,Point _v):p(_p),v(_v){ang=atan2(v.y,v.x);}
Point point(double a) {return p+(v*a);}
bool operator<(const Line& L)const
{
return ang<L.ang;
}
}; ///直线平移距离d
Line LineTransHor(Line l,int d)
{
Point vl=Verunit(l.v);
Point p1=l.p+vl*d,p2=l.p-vl*d;
Line ll=Line(p1,l.v);
return ll;
} ///直线交点(如果存在)
Point GetLineIntersection(Line a,Line b)
{
return GetLineIntersection(a.p,a.v,b.p,b.v);
} ///点p在有向直线的左边
bool OnLeft(const Line& L,const Point& p)
{
return Cross(L.v,p-L.p)>=0;
} ///圆
const double pi=acos(-1.0); struct Circle
{
Point c;
double r;
Circle(Point _c=0,double _r=0):c(_c),r(_r){}
Point point(double a)///依据圆心角算圆上的点
{
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
}; ///a点到b点(逆时针)在圆上的圆弧长度
double D(Point a,Point b,Circle C)
{
double ang1,ang2;
Point v1,v2;
v1=a-C.c; v2=b-C.c;
ang1=atan2(v1.y,v1.x);
ang2=atan2(v2.y,v2.x);
if(ang2<ang1) ang2+=2*pi;
return C.r*(ang2-ang1);
} ///直线与圆交点 返回交点个数
int getLineCircleIntersection(Line L,Circle C,double& t1,double& t2,vector<Point>& sol)
{
double a=L.v.x,b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y;
double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r;
double delta=f*f-4.*e*g;
if(dcmp(delta)<0) return 0;//相离
if(dcmp(delta)==0)//相切
{
t1=t2=-f/(2.*e); sol.push_back(L.point(t1));
return 1;
}
//相切
t1=(-f-sqrt(delta))/(2.*e); sol.push_back(L.point(t1));
t2=(-f+sqrt(delta))/(2.*e); sol.push_back(L.point(t2));
return 2;
} ///圆与圆交点 返回交点个数
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& Sol)
{
double d=Length(C1.c-C2.c);
if(dcmp(d)==0)
{
if(dcmp(C1.r-C2.r)==0) return -1;//重合
return 0;
}
if(dcmp(C1.r+C2.r-d)<0) return 0;
if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; double a=Angle(C2.c-C1.c);
double da=acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d)); Point p1=C1.point(a-da),p2=C1.point(a+da); Sol.push_back(p1);
if(p1==p2) return 1; Sol.push_back(p2);
return 2;
} ///P到圆的切线 v[] 储存切线向量
int getTangents(Point p,Circle C,Point* v)
{
Point u=C.c-p;
double dist=Length(u);
if(dist<C.r) return 0;
else if(dcmp(dist-C.r)==0)
{
///p在圆上仅仅有一条切线
v[0]=Rotate(u,pi/2);
return 1;
}
else
{
double ang=asin(C.r/dist);
v[0]=Rotate(u,-ang);
v[1]=Rotate(u,ang);
return 2;
}
} //两圆公切线 a,b 公切线再 圆 A B 上的切点
int getTengents(Circle A,Circle B,Point* a,Point* b)
{
int cnt=0;
if(A.r<B.r) { swap(A,B); swap(a,b); }
int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
int rdiff=A.r-B.r;
int rsum=A.r+B.r;
if(d2<rdiff*rdiff) return 0;///内含 double base=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
if(d2==0&&A.r==B.r) return -1; ///无穷多
if(d2==rdiff*rdiff)//内切 1条
{
a[cnt]=A.point(base); b[cnt]=B.point(base); cnt++;
return 1;
}
///外切
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(base-ang); cnt++;
if(d2==rsum*rsum)// one
{
a[cnt]=A.point(base); b[cnt]=B.point(pi+base); cnt++;
}
else if(d2>rsum*rsum)// two
{
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(pi+base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(pi+base-ang); cnt++;
}
return cnt;
} ///三角形外接圆
Circle CircumscribedCircle(Point p1,Point p2,Point p3)
{
double Bx=p2.x-p1.x,By=p2.y-p1.y;
double Cx=p3.x-p1.x,Cy=p3.y-p1.y;
double D=2*(Bx*Cy-By*Cx);
double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
Point p=Point(cx,cy);
return Circle(p,Length(p1-p));
} ///三角形内切圆
Circle InscribedCircle(Point p1,Point p2,Point p3)
{
double a=Length(p2-p3);
double b=Length(p3-p1);
double c=Length(p1-p2);
Point p=(p1*a+p2*b+p3*c)/(a+b+c);
return Circle(p,DistanceToLine(p,p1,p2));
} double RtoDegree(double x) {return x/pi*180.;} char op[200];
double a[10];
Point v[10];
double degree[10];
vector<Point> sol; int main()
{
while(scanf("%s",op)!=EOF)
{
if(strcmp(op,"CircumscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=CircumscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"InscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=InscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"TangentLineThroughPoint")==0)
{
for(int i=0;i<5;i++) scanf("%lf",a+i);
int sz=getTangents(Point(a[3],a[4]),Circle(Point(a[0],a[1]),a[2]),v);
for(int i=0;i<sz;i++)
{
double de=RtoDegree(Angle(v[i]));
if(dcmp(de)<0) de=180.+de;
else while(dcmp(de-180.)>=0) de-=180.;
degree[i]=de;
}
sort(degree,degree+sz);
putchar('[');if(sz==0) putchar(']');
for(int i=0;i<sz;i++) printf("%.6lf%c",degree[i],(i!=sz-1)? ',':']');
putchar(10);
}
else if(strcmp(op,"CircleThroughAPointAndTangentToALineWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Point A=Point(a[2],a[3]),B=Point(a[4],a[5]);
Circle C(Point(a[0],a[1]),a[6]); Point normal=Verunit(B-A);
normal=normal/Length(normal)*a[6]; Point ta=A+normal,tb=B+normal;
Line l1=Line(ta,tb-ta);
ta=A-normal,tb=B-normal;
Line l2=Line(ta,tb-ta); sol.clear();
double t1,t2;
int aa=getLineCircleIntersection(l1,C,t1,t2,sol);
int bb=getLineCircleIntersection(l2,C,t1,t2,sol);
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
else if(strcmp(op,"CircleTangentToTwoLinesWithRadius")==0)
{
for(int i=0;i<9;i++) scanf("%lf",a+i);
Line LA=Line(Point(a[0],a[1]),Point(a[2],a[3])-Point(a[0],a[1]));
Line LB=Line(Point(a[4],a[5]),Point(a[6],a[7])-Point(a[4],a[5]));
Line la1=LineTransHor(LA,a[8]),la2=LineTransHor(LA,-a[8]);
Line lb1=LineTransHor(LB,a[8]),lb2=LineTransHor(LB,-a[8]); sol.clear();
sol.push_back(GetLineIntersection(la1,lb1));
sol.push_back(GetLineIntersection(la1,lb2));
sol.push_back(GetLineIntersection(la2,lb1));
sol.push_back(GetLineIntersection(la2,lb2));
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10); }
else if(strcmp(op,"CircleTangentToTwoDisjointCirclesWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Circle C1=Circle(Point(a[0],a[1]),a[2]+a[6]);
Circle C2=Circle(Point(a[3],a[4]),a[5]+a[6]);
sol.clear();
getCircleCircleIntersection(C1,C2,sol);
sort(sol.begin(),sol.end());
putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
}
return 0;
}
UVA12304 2D Geometry 110 in 1! 计算几何的更多相关文章
- UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)
UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...
- Uva 12304 - 2D Geometry 110 in 1!
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA12304-2D Geometry 110 in 1!
就是给了六个关于圆的算法.实现它们. 注意的是,不仅输出格式那个符号什么的要一样.坐标的顺序也要从小到大-- 基本上没考虑什么精度的问题,然后就过了. 大白鼠又骗人.也许我的方法比較好? 我的做法就是 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- [GodLove]Wine93 Tarining Round #9
比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算 ID Title Pro ...
- uva 12304点与直线与圆之间的关系
Problem E 2D Geometry 110 in 1! This is a collection of 110 (in binary) 2D geometry problems. Circum ...
随机推荐
- springMVC框架搭建
springMVC和struts一样为MVC框架,但是springMVC与spring做到无缝连接. 在搭建SpringMVC时可以在官网上下载最新的jar包. http://www.springso ...
- PHP移动互联网开发笔记(5)——文件的上传下载
原文地址:http://www.php100.com/html/php/rumen/2014/0326/6706.html 一.文件的上传 1.client设置: (1).在 标签中将enctype和 ...
- Eclipse Workspace Unavailable
开启Eclipse 提示: Workspace Unavailable: Workspace in use or cannot be created, choose a different one. ...
- iOS 使用UIBezierPath类实现随手画画板
在上一篇文章中我介绍了 UIBezierPath类 介绍 ,下面这篇文章介绍一下如何通过这个类实现一个简单的随手画画板的简单程序demo,功能包括:划线(可以调整线条粗细,颜色),撤销笔画,回撤笔画, ...
- 两道二分coming~
第一道:poj 1905Expanding Rods 题意:两道墙(距离L)之间架一根棒子,棒子受热会变长,弯曲,长度变化满足公式( s=(1+n*C)*L),求的是弯曲的高度h. 首先来看这个图: ...
- 很具体GC学习笔记
GC学习笔记 这是我公司同事的GC学习笔记,写得蛮具体的,由浅入深,循序渐进,让人一看就懂,特转到这里. 一.GC特性以及各种GC的选择 1.垃圾回收器的特性 2.对垃圾回收器的选择 2.1 连续 V ...
- POJ1087 A Plug for UNIX 【最大流】
A Plug for UNIX Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13855 Accepted: 4635 ...
- 使用简单的 5 个步骤设置 Web 服务器集群
通过在多个处理器之间分担工作负载并采用多种软件恢复技术,能够提供高度可用的环境并提高环境的总体 RAS(可靠性.可用性和可服务性).可以得到的好处包括:更快地从意外中断中恢复运行,以及将意外中断对终端 ...
- Hangfire Highlighter Tutorial
Hangfire Highlighter Tutorial Hangfire是一个开源且商业免费使用的工具函数库.可以让你非常容易地在ASP.NET应用(也可以不在ASP.NET应用)中执行多种类型的 ...
- 谈VC++对象模型
一个C++程序员,想要进一步提升技术水平的话,应该多了解一些语言的语意细节.对于使用VC++的程序员来说,还应该了解一些VC++对于C++的诠释.Inside the C++ Object Model ...