UVA12304 2D Geometry 110 in 1! 计算几何
计算几何: 堆几何模版就能够了。
。
。。
|
Description
Problem E2D Geometry 110 in 1!This is a collection of 110 (in binary) 2D geometry problems. CircumscribedCircle x1 y1 x2 y2 x3 y3 Find out the circumscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the InscribedCircle x1 y1 x2 y2 x3 y3 Find out the inscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius. TangentLineThroughPoint xc yc r xp yp Find out the list of tangent lines of circle centered (xc,yc) with radius r that pass through point (xp,yp). Each tangent line is formatted as a single real number "angle" (in degrees), the angle of the line
Find out the list of circles passing through point (xp, yp) that is tangent to a line (x1,y1)-(x2,y2) with radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles tangent to two non-parallel lines (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4), having radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles externally tangent to two disjoint circles (x1,y1,r1) and (x2,y2,r2), having radius r. By "externally" we mean it should not enclose the two given circles. Each circle is formatted
For each line described above, the two endpoints will not be equal. When formatting a list of real numbers, the numbers should be sorted in increasing order; when formatting a list of (x,y) pairs, the pairs InputThere will be at most 1000 sub-problems, one in each line, formatted as above. The coordinates will be integers with absolute value not greater than 1000. The input is terminated by end of file (EOF). OutputFor each input line, print out your answer formatted as stated in the problem description. Each number in the output should be rounded to six digits after the decimal point. Note that the list should be enclosed Sample InputCircumscribedCircle 0 0 20 1 8 17 Output for the Sample Input(9.734940,5.801205,11.332389) Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG Lovers Special Thanks: Di Tang and Yi Chen Source
Root :: Prominent Problemsetters :: Rujia Liu
Root :: Rujia Liu's Presents :: Present 4: Dedicated to Geometry and CG Lovers Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D :: option=com_onlinejudge&Itemid=8&category=528" style="color:blue; text-decoration:none">Examples |
![]() |
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector> using namespace std; const double eps=1e-6; int dcmp(double x){if(fabs(x)<eps) return 0; return (x<0)?-1:1;} struct Point
{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){};
}; Point operator+(Point A,Point B) {return Point(A.x+B.x,A.y+B.y);}
Point operator-(Point A,Point B) {return Point(A.x-B.x,A.y-B.y);}
Point operator*(Point A,double p) {return Point(A.x*p,A.y*p);}
Point operator/(Point A,double p) {return Point(A.x/p,A.y/p);} bool operator<(const Point&a,const Point&b){return a.x<b.x||(a.x==b.x&&a.y<b.y);} bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Dot(Point A,Point B) {return A.x*B.x+A.y*B.y;}
double Length(Point A) {return sqrt(Dot(A,A));}
double Angle(Point A,Point B) {return acos(Dot(A,B)/Length(A)/Length(B));}
double Angle(Point v) {return atan2(v.y,v.x);}
double Cross(Point A,Point B) {return A.x*B.y-A.y*B.x;} /**Cross
P*Q > 0 P在Q的顺时针方向
P*Q < 0 P在Q的逆时针方向
P*Q = 0 PQ共线
*/ Point Horunit(Point x) {return x/Length(x);}///单位向量
Point Verunit(Point x) {return Point(-x.y,x.x)/Length(x);}///单位法向量 Point Rotate(Point A,double rad)///逆时针旋转
{
return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} double Area2(const Point A,const Point B,const Point C)
{
return Cross(B-A,C-A);
} /// 过两点p1, p2的直线一般方程ax+by+c=0 (x2-x1)(y-y1) = (y2-y1)(x-x1)
void getLineGeneralEquation(const Point& p1, const Point& p2, double& a, double&b, double &c)
{
a = p2.y-p1.y;
b = p1.x-p2.x;
c = -a*p1.x - b*p1.y;
} ///P+t*v Q+w*t的焦点
Point GetLineIntersection(Point P,Point v,Point Q,Point w)
{
Point u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} ///点到直线距离
double DistanceToLine(Point P,Point A,Point B)
{
Point v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
} ///点到线段距离
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B) return Length(P-A);
Point v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} ///点到直线投影
Point GetLineProjection(Point P,Point A,Point B)
{
Point v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} ///推断规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
} ///一个点是否在直线端点上
bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
} ///多边形有向面积
double PolygonArea(Point* p,int n)
{
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} ///有向直线
struct Line
{
Point p;
Point v;
double ang;
Line(Point _p,Point _v):p(_p),v(_v){ang=atan2(v.y,v.x);}
Point point(double a) {return p+(v*a);}
bool operator<(const Line& L)const
{
return ang<L.ang;
}
}; ///直线平移距离d
Line LineTransHor(Line l,int d)
{
Point vl=Verunit(l.v);
Point p1=l.p+vl*d,p2=l.p-vl*d;
Line ll=Line(p1,l.v);
return ll;
} ///直线交点(如果存在)
Point GetLineIntersection(Line a,Line b)
{
return GetLineIntersection(a.p,a.v,b.p,b.v);
} ///点p在有向直线的左边
bool OnLeft(const Line& L,const Point& p)
{
return Cross(L.v,p-L.p)>=0;
} ///圆
const double pi=acos(-1.0); struct Circle
{
Point c;
double r;
Circle(Point _c=0,double _r=0):c(_c),r(_r){}
Point point(double a)///依据圆心角算圆上的点
{
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
}; ///a点到b点(逆时针)在圆上的圆弧长度
double D(Point a,Point b,Circle C)
{
double ang1,ang2;
Point v1,v2;
v1=a-C.c; v2=b-C.c;
ang1=atan2(v1.y,v1.x);
ang2=atan2(v2.y,v2.x);
if(ang2<ang1) ang2+=2*pi;
return C.r*(ang2-ang1);
} ///直线与圆交点 返回交点个数
int getLineCircleIntersection(Line L,Circle C,double& t1,double& t2,vector<Point>& sol)
{
double a=L.v.x,b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y;
double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r;
double delta=f*f-4.*e*g;
if(dcmp(delta)<0) return 0;//相离
if(dcmp(delta)==0)//相切
{
t1=t2=-f/(2.*e); sol.push_back(L.point(t1));
return 1;
}
//相切
t1=(-f-sqrt(delta))/(2.*e); sol.push_back(L.point(t1));
t2=(-f+sqrt(delta))/(2.*e); sol.push_back(L.point(t2));
return 2;
} ///圆与圆交点 返回交点个数
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& Sol)
{
double d=Length(C1.c-C2.c);
if(dcmp(d)==0)
{
if(dcmp(C1.r-C2.r)==0) return -1;//重合
return 0;
}
if(dcmp(C1.r+C2.r-d)<0) return 0;
if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; double a=Angle(C2.c-C1.c);
double da=acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d)); Point p1=C1.point(a-da),p2=C1.point(a+da); Sol.push_back(p1);
if(p1==p2) return 1; Sol.push_back(p2);
return 2;
} ///P到圆的切线 v[] 储存切线向量
int getTangents(Point p,Circle C,Point* v)
{
Point u=C.c-p;
double dist=Length(u);
if(dist<C.r) return 0;
else if(dcmp(dist-C.r)==0)
{
///p在圆上仅仅有一条切线
v[0]=Rotate(u,pi/2);
return 1;
}
else
{
double ang=asin(C.r/dist);
v[0]=Rotate(u,-ang);
v[1]=Rotate(u,ang);
return 2;
}
} //两圆公切线 a,b 公切线再 圆 A B 上的切点
int getTengents(Circle A,Circle B,Point* a,Point* b)
{
int cnt=0;
if(A.r<B.r) { swap(A,B); swap(a,b); }
int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
int rdiff=A.r-B.r;
int rsum=A.r+B.r;
if(d2<rdiff*rdiff) return 0;///内含 double base=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
if(d2==0&&A.r==B.r) return -1; ///无穷多
if(d2==rdiff*rdiff)//内切 1条
{
a[cnt]=A.point(base); b[cnt]=B.point(base); cnt++;
return 1;
}
///外切
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(base-ang); cnt++;
if(d2==rsum*rsum)// one
{
a[cnt]=A.point(base); b[cnt]=B.point(pi+base); cnt++;
}
else if(d2>rsum*rsum)// two
{
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(pi+base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(pi+base-ang); cnt++;
}
return cnt;
} ///三角形外接圆
Circle CircumscribedCircle(Point p1,Point p2,Point p3)
{
double Bx=p2.x-p1.x,By=p2.y-p1.y;
double Cx=p3.x-p1.x,Cy=p3.y-p1.y;
double D=2*(Bx*Cy-By*Cx);
double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
Point p=Point(cx,cy);
return Circle(p,Length(p1-p));
} ///三角形内切圆
Circle InscribedCircle(Point p1,Point p2,Point p3)
{
double a=Length(p2-p3);
double b=Length(p3-p1);
double c=Length(p1-p2);
Point p=(p1*a+p2*b+p3*c)/(a+b+c);
return Circle(p,DistanceToLine(p,p1,p2));
} double RtoDegree(double x) {return x/pi*180.;} char op[200];
double a[10];
Point v[10];
double degree[10];
vector<Point> sol; int main()
{
while(scanf("%s",op)!=EOF)
{
if(strcmp(op,"CircumscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=CircumscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"InscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=InscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"TangentLineThroughPoint")==0)
{
for(int i=0;i<5;i++) scanf("%lf",a+i);
int sz=getTangents(Point(a[3],a[4]),Circle(Point(a[0],a[1]),a[2]),v);
for(int i=0;i<sz;i++)
{
double de=RtoDegree(Angle(v[i]));
if(dcmp(de)<0) de=180.+de;
else while(dcmp(de-180.)>=0) de-=180.;
degree[i]=de;
}
sort(degree,degree+sz);
putchar('[');if(sz==0) putchar(']');
for(int i=0;i<sz;i++) printf("%.6lf%c",degree[i],(i!=sz-1)? ',':']');
putchar(10);
}
else if(strcmp(op,"CircleThroughAPointAndTangentToALineWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Point A=Point(a[2],a[3]),B=Point(a[4],a[5]);
Circle C(Point(a[0],a[1]),a[6]); Point normal=Verunit(B-A);
normal=normal/Length(normal)*a[6]; Point ta=A+normal,tb=B+normal;
Line l1=Line(ta,tb-ta);
ta=A-normal,tb=B-normal;
Line l2=Line(ta,tb-ta); sol.clear();
double t1,t2;
int aa=getLineCircleIntersection(l1,C,t1,t2,sol);
int bb=getLineCircleIntersection(l2,C,t1,t2,sol);
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
else if(strcmp(op,"CircleTangentToTwoLinesWithRadius")==0)
{
for(int i=0;i<9;i++) scanf("%lf",a+i);
Line LA=Line(Point(a[0],a[1]),Point(a[2],a[3])-Point(a[0],a[1]));
Line LB=Line(Point(a[4],a[5]),Point(a[6],a[7])-Point(a[4],a[5]));
Line la1=LineTransHor(LA,a[8]),la2=LineTransHor(LA,-a[8]);
Line lb1=LineTransHor(LB,a[8]),lb2=LineTransHor(LB,-a[8]); sol.clear();
sol.push_back(GetLineIntersection(la1,lb1));
sol.push_back(GetLineIntersection(la1,lb2));
sol.push_back(GetLineIntersection(la2,lb1));
sol.push_back(GetLineIntersection(la2,lb2));
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10); }
else if(strcmp(op,"CircleTangentToTwoDisjointCirclesWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Circle C1=Circle(Point(a[0],a[1]),a[2]+a[6]);
Circle C2=Circle(Point(a[3],a[4]),a[5]+a[6]);
sol.clear();
getCircleCircleIntersection(C1,C2,sol);
sort(sol.begin(),sol.end());
putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
}
return 0;
}
UVA12304 2D Geometry 110 in 1! 计算几何的更多相关文章
- UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)
UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...
- Uva 12304 - 2D Geometry 110 in 1!
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA12304-2D Geometry 110 in 1!
就是给了六个关于圆的算法.实现它们. 注意的是,不仅输出格式那个符号什么的要一样.坐标的顺序也要从小到大-- 基本上没考虑什么精度的问题,然后就过了. 大白鼠又骗人.也许我的方法比較好? 我的做法就是 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- [GodLove]Wine93 Tarining Round #9
比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算 ID Title Pro ...
- uva 12304点与直线与圆之间的关系
Problem E 2D Geometry 110 in 1! This is a collection of 110 (in binary) 2D geometry problems. Circum ...
随机推荐
- metasploit学习之ms03_026
傻瓜式利用ms03_026_dcom: Matching Modules ================ Name Disclosure Date Rank Description ---- --- ...
- [置顶] Java字节码文件剖析
Java为什么能够支持跨平台,其实关键就是在于其*.class字节码文件,因为*.class字节码文件有一个统一标准的规范,里面是JVM运行的时需要的相关指令,各家的JVM必须能够解释编译执行标准字节 ...
- HDU 1556 Color the Ball 线段树 题解
本题使用线段树自然能够,由于区间的问题. 这里比較难想的就是: 1 最后更新须要查询全部叶子节点的值,故此须要使用O(nlgn)时间效率更新全部点. 2 截取区间不能有半点差错.否则答案错误. 这两点 ...
- .net三步配置错误页面,让你的站点远离不和谐的页面
假设你的站点出现一堆让人看不懂的报错,那么你就不是一个合格的程序猿.也不是一个合格的站长. 以下的方面能够帮助你的站点远离让人头大的页面. 第一步:配置web.config 打开web.config, ...
- [Ext JS 4]性能优化
一般的优化技巧 1. 检查你定义的时间监听器 正确的设置事件监听器对性能会有很大的影响. 举例来说, 在定义一个store的时候,设置一个load 的事件去触发从后台读取数据,如果设置single 的 ...
- Lucene.Net 2.3.1开发介绍 —— 简介
原文:Lucene.Net 2.3.1开发介绍 -- 简介 Lucene.Net是Lucene在dot net平台上的移植版本.它的功能与Lucene一样,都是用来提供一组API,让我们能快速开发自己 ...
- C#多线程实现方法——Task/Task.Factary
原文:C#多线程实现方法--Task/Task.Factary Task 使用 Task以及Task.Factory都是在.Net 4引用的.Task跟Thread很类似,通过下面例子可以看到. st ...
- Eclipse代码字体、颜色美化,更改字体大小、颜色
先看效果: 感觉如何,是否比你的eclipse编辑器显示的代码要漂亮简洁呢?呵呵.这个是我原来ADT Eclipse的效果,现在去下居然更新掉了,找不到了.于是我就参照我原来的配置对这个新的Eclip ...
- iOS 开发百问(6)
61.警告"addexplicit braces to avoid dangling else" 所谓"危急的else"是相似这种代码: if(a== 10) ...
- Loser tree in Python | Christan Christens
Loser tree in Python | Christan Christens Loser tree in Python I am taking an Advanced Data Structur ...




