UVA12304 2D Geometry 110 in 1! 计算几何
计算几何: 堆几何模版就能够了。
。
。。
Description ![]() Problem E2D Geometry 110 in 1!This is a collection of 110 (in binary) 2D geometry problems. CircumscribedCircle x1 y1 x2 y2 x3 y3 Find out the circumscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the InscribedCircle x1 y1 x2 y2 x3 y3 Find out the inscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius. TangentLineThroughPoint xc yc r xp yp Find out the list of tangent lines of circle centered (xc,yc) with radius r that pass through point (xp,yp). Each tangent line is formatted as a single real number "angle" (in degrees), the angle of the line
Find out the list of circles passing through point (xp, yp) that is tangent to a line (x1,y1)-(x2,y2) with radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles tangent to two non-parallel lines (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4), having radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer
Find out the list of circles externally tangent to two disjoint circles (x1,y1,r1) and (x2,y2,r2), having radius r. By "externally" we mean it should not enclose the two given circles. Each circle is formatted For each line described above, the two endpoints will not be equal. When formatting a list of real numbers, the numbers should be sorted in increasing order; when formatting a list of (x,y) pairs, the pairs InputThere will be at most 1000 sub-problems, one in each line, formatted as above. The coordinates will be integers with absolute value not greater than 1000. The input is terminated by end of file (EOF). OutputFor each input line, print out your answer formatted as stated in the problem description. Each number in the output should be rounded to six digits after the decimal point. Note that the list should be enclosed Sample InputCircumscribedCircle 0 0 20 1 8 17 Output for the Sample Input(9.734940,5.801205,11.332389) Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG Lovers Special Thanks: Di Tang and Yi Chen Source
Root :: Prominent Problemsetters :: Rujia Liu
Root :: Rujia Liu's Presents :: Present 4: Dedicated to Geometry and CG Lovers Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D :: option=com_onlinejudge&Itemid=8&category=528" style="color:blue; text-decoration:none">Examples |
![]() |
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector> using namespace std; const double eps=1e-6; int dcmp(double x){if(fabs(x)<eps) return 0; return (x<0)?-1:1;} struct Point
{
double x,y;
Point(double _x=0,double _y=0):x(_x),y(_y){};
}; Point operator+(Point A,Point B) {return Point(A.x+B.x,A.y+B.y);}
Point operator-(Point A,Point B) {return Point(A.x-B.x,A.y-B.y);}
Point operator*(Point A,double p) {return Point(A.x*p,A.y*p);}
Point operator/(Point A,double p) {return Point(A.x/p,A.y/p);} bool operator<(const Point&a,const Point&b){return a.x<b.x||(a.x==b.x&&a.y<b.y);} bool operator==(const Point&a,const Point&b){return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0;} double Dot(Point A,Point B) {return A.x*B.x+A.y*B.y;}
double Length(Point A) {return sqrt(Dot(A,A));}
double Angle(Point A,Point B) {return acos(Dot(A,B)/Length(A)/Length(B));}
double Angle(Point v) {return atan2(v.y,v.x);}
double Cross(Point A,Point B) {return A.x*B.y-A.y*B.x;} /**Cross
P*Q > 0 P在Q的顺时针方向
P*Q < 0 P在Q的逆时针方向
P*Q = 0 PQ共线
*/ Point Horunit(Point x) {return x/Length(x);}///单位向量
Point Verunit(Point x) {return Point(-x.y,x.x)/Length(x);}///单位法向量 Point Rotate(Point A,double rad)///逆时针旋转
{
return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} double Area2(const Point A,const Point B,const Point C)
{
return Cross(B-A,C-A);
} /// 过两点p1, p2的直线一般方程ax+by+c=0 (x2-x1)(y-y1) = (y2-y1)(x-x1)
void getLineGeneralEquation(const Point& p1, const Point& p2, double& a, double&b, double &c)
{
a = p2.y-p1.y;
b = p1.x-p2.x;
c = -a*p1.x - b*p1.y;
} ///P+t*v Q+w*t的焦点
Point GetLineIntersection(Point P,Point v,Point Q,Point w)
{
Point u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} ///点到直线距离
double DistanceToLine(Point P,Point A,Point B)
{
Point v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
} ///点到线段距离
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B) return Length(P-A);
Point v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<0) return Length(v2);
else if(dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2))/Length(v1);
} ///点到直线投影
Point GetLineProjection(Point P,Point A,Point B)
{
Point v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
} ///推断规范相交
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
} ///一个点是否在直线端点上
bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
} ///多边形有向面积
double PolygonArea(Point* p,int n)
{
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
} ///有向直线
struct Line
{
Point p;
Point v;
double ang;
Line(Point _p,Point _v):p(_p),v(_v){ang=atan2(v.y,v.x);}
Point point(double a) {return p+(v*a);}
bool operator<(const Line& L)const
{
return ang<L.ang;
}
}; ///直线平移距离d
Line LineTransHor(Line l,int d)
{
Point vl=Verunit(l.v);
Point p1=l.p+vl*d,p2=l.p-vl*d;
Line ll=Line(p1,l.v);
return ll;
} ///直线交点(如果存在)
Point GetLineIntersection(Line a,Line b)
{
return GetLineIntersection(a.p,a.v,b.p,b.v);
} ///点p在有向直线的左边
bool OnLeft(const Line& L,const Point& p)
{
return Cross(L.v,p-L.p)>=0;
} ///圆
const double pi=acos(-1.0); struct Circle
{
Point c;
double r;
Circle(Point _c=0,double _r=0):c(_c),r(_r){}
Point point(double a)///依据圆心角算圆上的点
{
return Point(c.x+cos(a)*r,c.y+sin(a)*r);
}
}; ///a点到b点(逆时针)在圆上的圆弧长度
double D(Point a,Point b,Circle C)
{
double ang1,ang2;
Point v1,v2;
v1=a-C.c; v2=b-C.c;
ang1=atan2(v1.y,v1.x);
ang2=atan2(v2.y,v2.x);
if(ang2<ang1) ang2+=2*pi;
return C.r*(ang2-ang1);
} ///直线与圆交点 返回交点个数
int getLineCircleIntersection(Line L,Circle C,double& t1,double& t2,vector<Point>& sol)
{
double a=L.v.x,b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y;
double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r;
double delta=f*f-4.*e*g;
if(dcmp(delta)<0) return 0;//相离
if(dcmp(delta)==0)//相切
{
t1=t2=-f/(2.*e); sol.push_back(L.point(t1));
return 1;
}
//相切
t1=(-f-sqrt(delta))/(2.*e); sol.push_back(L.point(t1));
t2=(-f+sqrt(delta))/(2.*e); sol.push_back(L.point(t2));
return 2;
} ///圆与圆交点 返回交点个数
int getCircleCircleIntersection(Circle C1,Circle C2,vector<Point>& Sol)
{
double d=Length(C1.c-C2.c);
if(dcmp(d)==0)
{
if(dcmp(C1.r-C2.r)==0) return -1;//重合
return 0;
}
if(dcmp(C1.r+C2.r-d)<0) return 0;
if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; double a=Angle(C2.c-C1.c);
double da=acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d)); Point p1=C1.point(a-da),p2=C1.point(a+da); Sol.push_back(p1);
if(p1==p2) return 1; Sol.push_back(p2);
return 2;
} ///P到圆的切线 v[] 储存切线向量
int getTangents(Point p,Circle C,Point* v)
{
Point u=C.c-p;
double dist=Length(u);
if(dist<C.r) return 0;
else if(dcmp(dist-C.r)==0)
{
///p在圆上仅仅有一条切线
v[0]=Rotate(u,pi/2);
return 1;
}
else
{
double ang=asin(C.r/dist);
v[0]=Rotate(u,-ang);
v[1]=Rotate(u,ang);
return 2;
}
} //两圆公切线 a,b 公切线再 圆 A B 上的切点
int getTengents(Circle A,Circle B,Point* a,Point* b)
{
int cnt=0;
if(A.r<B.r) { swap(A,B); swap(a,b); }
int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
int rdiff=A.r-B.r;
int rsum=A.r+B.r;
if(d2<rdiff*rdiff) return 0;///内含 double base=atan2(B.c.y-A.c.y,B.c.x-A.c.x);
if(d2==0&&A.r==B.r) return -1; ///无穷多
if(d2==rdiff*rdiff)//内切 1条
{
a[cnt]=A.point(base); b[cnt]=B.point(base); cnt++;
return 1;
}
///外切
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(base-ang); cnt++;
if(d2==rsum*rsum)// one
{
a[cnt]=A.point(base); b[cnt]=B.point(pi+base); cnt++;
}
else if(d2>rsum*rsum)// two
{
double ang=acos((A.r-B.r)/sqrt(d2));
a[cnt]=A.point(base+ang); b[cnt]=B.point(pi+base+ang); cnt++;
a[cnt]=A.point(base-ang); b[cnt]=B.point(pi+base-ang); cnt++;
}
return cnt;
} ///三角形外接圆
Circle CircumscribedCircle(Point p1,Point p2,Point p3)
{
double Bx=p2.x-p1.x,By=p2.y-p1.y;
double Cx=p3.x-p1.x,Cy=p3.y-p1.y;
double D=2*(Bx*Cy-By*Cx);
double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
Point p=Point(cx,cy);
return Circle(p,Length(p1-p));
} ///三角形内切圆
Circle InscribedCircle(Point p1,Point p2,Point p3)
{
double a=Length(p2-p3);
double b=Length(p3-p1);
double c=Length(p1-p2);
Point p=(p1*a+p2*b+p3*c)/(a+b+c);
return Circle(p,DistanceToLine(p,p1,p2));
} double RtoDegree(double x) {return x/pi*180.;} char op[200];
double a[10];
Point v[10];
double degree[10];
vector<Point> sol; int main()
{
while(scanf("%s",op)!=EOF)
{
if(strcmp(op,"CircumscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=CircumscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"InscribedCircle")==0)
{
for(int i=0;i<6;i++) scanf("%lf",a+i);
Circle C=InscribedCircle(Point(a[0],a[1]),Point(a[2],a[3]),Point(a[4],a[5]));
printf("(%.6lf,%.6lf,%.6lf)\n",C.c.x,C.c.y,C.r);
}
else if(strcmp(op,"TangentLineThroughPoint")==0)
{
for(int i=0;i<5;i++) scanf("%lf",a+i);
int sz=getTangents(Point(a[3],a[4]),Circle(Point(a[0],a[1]),a[2]),v);
for(int i=0;i<sz;i++)
{
double de=RtoDegree(Angle(v[i]));
if(dcmp(de)<0) de=180.+de;
else while(dcmp(de-180.)>=0) de-=180.;
degree[i]=de;
}
sort(degree,degree+sz);
putchar('[');if(sz==0) putchar(']');
for(int i=0;i<sz;i++) printf("%.6lf%c",degree[i],(i!=sz-1)? ',':']');
putchar(10);
}
else if(strcmp(op,"CircleThroughAPointAndTangentToALineWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Point A=Point(a[2],a[3]),B=Point(a[4],a[5]);
Circle C(Point(a[0],a[1]),a[6]); Point normal=Verunit(B-A);
normal=normal/Length(normal)*a[6]; Point ta=A+normal,tb=B+normal;
Line l1=Line(ta,tb-ta);
ta=A-normal,tb=B-normal;
Line l2=Line(ta,tb-ta); sol.clear();
double t1,t2;
int aa=getLineCircleIntersection(l1,C,t1,t2,sol);
int bb=getLineCircleIntersection(l2,C,t1,t2,sol);
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
else if(strcmp(op,"CircleTangentToTwoLinesWithRadius")==0)
{
for(int i=0;i<9;i++) scanf("%lf",a+i);
Line LA=Line(Point(a[0],a[1]),Point(a[2],a[3])-Point(a[0],a[1]));
Line LB=Line(Point(a[4],a[5]),Point(a[6],a[7])-Point(a[4],a[5]));
Line la1=LineTransHor(LA,a[8]),la2=LineTransHor(LA,-a[8]);
Line lb1=LineTransHor(LB,a[8]),lb2=LineTransHor(LB,-a[8]); sol.clear();
sol.push_back(GetLineIntersection(la1,lb1));
sol.push_back(GetLineIntersection(la1,lb2));
sol.push_back(GetLineIntersection(la2,lb1));
sol.push_back(GetLineIntersection(la2,lb2));
sort(sol.begin(),sol.end()); putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10); }
else if(strcmp(op,"CircleTangentToTwoDisjointCirclesWithRadius")==0)
{
for(int i=0;i<7;i++) scanf("%lf",a+i);
Circle C1=Circle(Point(a[0],a[1]),a[2]+a[6]);
Circle C2=Circle(Point(a[3],a[4]),a[5]+a[6]);
sol.clear();
getCircleCircleIntersection(C1,C2,sol);
sort(sol.begin(),sol.end());
putchar('[');
for(int i=0,sz=sol.size();i<sz;i++)
{
if(i) putchar(',');
printf("(%.6lf,%.6lf)",sol[i].x,sol[i].y);
}
putchar(']'); putchar(10);
}
}
return 0;
}
UVA12304 2D Geometry 110 in 1! 计算几何的更多相关文章
- UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)
UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...
- Uva 12304 - 2D Geometry 110 in 1!
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA12304-2D Geometry 110 in 1!
就是给了六个关于圆的算法.实现它们. 注意的是,不仅输出格式那个符号什么的要一样.坐标的顺序也要从小到大-- 基本上没考虑什么精度的问题,然后就过了. 大白鼠又骗人.也许我的方法比較好? 我的做法就是 ...
- hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
- .Uva&LA部分题目代码
1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...
- [GodLove]Wine93 Tarining Round #9
比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算 ID Title Pro ...
- uva 12304点与直线与圆之间的关系
Problem E 2D Geometry 110 in 1! This is a collection of 110 (in binary) 2D geometry problems. Circum ...
随机推荐
- sed 技巧一例:特定位置插入
通过一例子熟悉 sed 的运用 下面命令是在修改 ~/fs/install/nzos.conf 文件, 并在 env 第一次出现的地方再添加一行 env LXC_EXTRA_PORT=5556 sed ...
- uva 568(数学)
题解:从1開始乘到n,由于结果仅仅要最后一位.所以每乘完一次,仅仅要保留后5位(少了值会不准确,刚開始仅仅保留了一位.结果到15就错了,保留多了int会溢出,比方3125就会出错) 和下一个数相乘,接 ...
- hibernate简单介绍
1. Hibernate是什么? hibernate是 轻量级的 ORM 框架. ORM全称object/relationmapping [对象/关系映射]. Hibernate主要用来实现Jav ...
- Dropbox + Farbox高速创建免费博客小站
创建自己的Dropbox账号(已有账号的略过) 注冊地址:Dropbox 点击链接注冊就好了,so easy: 账号注冊成功后,能够选择下载同步client(windows.Mac.ios.andro ...
- POJ 3481 & HDU 1908 Double Queue (map运用)
题目链接: PKU:http://poj.org/problem?id=3481 HDU:http://acm.hdu.edu.cn/showproblem.php?pid=1908 Descript ...
- 【Demo 0007】Java基础-类扩展特性
本章学习要点: 1. 掌握static 修饰的类,方法以及变量的功能及用法; 2. 掌握代码块(静态,非静态)的作用以及注意事项: 3. 了解基本数据类 ...
- HDU 4876 ZCC loves cards _(:зゝ∠)_ 随机输出保平安
GG,,,g艹 #include <cstdio> #include <iostream> #include <algorithm> #include <st ...
- 分享一些免费的,开源的邮件server软件
因为企业的须要,我们非常可能须要架设一个邮件server,微软的Exchange太复杂?GOOGLE出来的又收费!头大了吧,OK,贾芸斐在这里给大家分享推荐几个免费的开源的邮件server软件.希望你 ...
- VC 实现视图区背景颜色渐变填充
void CSTest1View::OnDraw(CDC* pDC) { CSTest1Doc* pDoc = GetDocument(); ASSERT_VALID(pDoc); // TODO: ...
- 基于Predictive Parsing的ABNF语法分析器(十)——AbnfParser文法解析器之数值类型(num-val)
ANBF语法中的数值类型有3种:二进制.十进制和十六进制,可以是一个以点号分隔的数列,也可以是一个数值的范围.例如,%d11.22.33.44.55表示五个有次序的十进制数字“11.22.33.44. ...