time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

採用了搜索记忆化的思想,每次的问题向下归结为较小的子问题求解。

注意一下精度问题,假设精度已经达到要求,就不用再向下进行求解了。

dp[w][b]=p1+p2*tmp;

p1=w/(w+b) //公主直接赢的概率

p2=b/(w+b), b--; p*=(b/(w+b)); b--; 经过一轮,两个选手均未摸到白老鼠

tmp=dfs(w-1,b)*(w/(w+b))+dfs(w,b-1)*(b/(w+b));  //向下深搜乘以对应的概率,某种颜色老鼠吓跑的概率。。

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double f[N][N];
double dfs(int w,int b) //Princess赢的概率
{
if(w<=0)
return 0;
if(b<=0)
return 1;
if(fabs(f[w][b]+1.0)>eps)
return f[w][b];
double p1,p2,tmp=1;
p1=w*1.0/(w+b); //直接赢
p2=b*1.0/(w+b); //还没输
b--;
p2=p2*(b*1.0/(w+b)); //dragon 也没赢
b--;
if(p2>eps) //精度不够则继续向下深搜!!
tmp=(w*1.0/(w+b))*dfs(w-1,b)+(b*1.0/(w+b))*dfs(w,b-1);
//printf("%.9f %.9f %.9f\n",p1,p2,tmp);
return f[w][b+2]=p1+p2*tmp;
}
int main()
{
int i,w,b;
memset(f,-1,sizeof(f));
while(scanf("%d%d",&w,&b)!=-1)
{
printf("%.9f\n",dfs(w,b));
}
return 0;
}

非递归形式的:

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double dp[N][N]; //dp[w][b] 代表当前情况下Princess赢的概率
void inti()
{
memset(dp,-1,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<N;i++)
{
dp[i][0]=1;
dp[0][i]=0;
}
}
int main()
{
int i,j,w,b;
double tmp;
inti();
while(scanf("%d%d",&w,&b)!=-1)
{
if(fabs(dp[w][b]+1.0)>eps)
{
printf("%.9f\n",dp[w][b]);
continue;
}
for(i=1;i<=w;i++)
{
for(j=1;j<=b;j++)
{
dp[i][j]=i*1.0/(i+j);
tmp=j*1.0/(i+j)*(j-1)/(i+j-1);
if(j>=2&&i+j>3)
dp[i][j]+=tmp*dp[i-1][j-2]*i/(i+j-2);
if(j>=3&&i+j>3)
dp[i][j]+=tmp*dp[i][j-3]*(j-2)/(i+j-2);
}
}
printf("%.9f\n",dp[w][b]);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

CF 148D. Bag of mice (可能性DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. CF 148D Bag of mice 题解

    题面 这是我做的第一道概率DP题: 做完后发现没有后效性的DP是真的水: 在这里说主要是再捋顺一下思路: 设f[i][j]表示有i只白鼠,j只黑鼠是获胜的概率: 显然:f[i][0]=1; 然后分四种 ...

  8. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  9. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

随机推荐

  1. 调用ShellExecute需要头文件

    调用ShellExecute需要头文件 #include   "windows.h " #include   "shellapi.h "

  2. MongoDB在实际项目

    MongoDB在实际项目中的使用   MongoDB简介 MongoDB是近些年来流行起来的NoSql的代表,和传统数据库最大的区别是支持文档型数据库.当然,现在的一些数据库通过自定义复合类型,可变长 ...

  3. 什么是Java “实例化”

    实例化:对象也是引用数据类型,只能使用new运算符从堆中分配内存: 使用已经定义好的类,创建该类对象的过程称为“实例化”. 只有先实例化类的对象,才可以访问到类中的成员(属性和方法). 使用成员运算符 ...

  4. 肯德基champs各个字母代表什么_百度知道

    肯德基champs各个字母代表什么_百度知道 肯德基champs各个字母代表什么

  5. Android NDK入门实例 计算斐波那契数列二生成.so库文件

    上一篇文章输生成了jni头文件,里面包含了本地C代码的信息,提供我们引用的C头文件.下面实现本地代码,再用ndk-build编译生成.so库文件.由于编译时要用到make和gcc,这里很多人是通过安装 ...

  6. php 多进程中的信号问题

    1.以下代码sleep时间远小于20 <?php // 当子进程退出时,会触发该函数 function sig_handler($sig) { switch($sig) { case SIGCH ...

  7. 从后台绑定数据到ligerui 的comboBox下拉框组件

    这次来记录一下ligerUI的comboBox下拉框组件,ligerUI的API里也有相关描写叙述,上面都是前台写死数据,然后显示在组件中,我这次要说的是将后台的数据绑定到下拉框组件中,废话不多说. ...

  8. mysql事务、触发器、视图、存储过程、函数

    存储过程: procedure 概念类似于函数,就是把一段代码封装起来, 当要执行这一段代码的时候,可以通过调用该存储过程来实现. 在封装的语句体里面,可以用if/else, case,while等控 ...

  9. Using OpenCV Java with Eclipse(转)

    转自:http://docs.opencv.org/trunk/doc/tutorials/introduction/java_eclipse/java_eclipse.html Using Open ...

  10. 采用DWR、maven保存数据到数据库

    一.原理: Ajax是时下比较流行的一种web界面设计新思路,其核心思想是从浏览器获取XMLHttp对象与服务器端进行交互. DWR(Direct Web Remoting)就是实现了这种Ajax技术 ...