NoSQL在2010年风生水起,大大小小的Web站点在追求高性能高可靠性方面,不由自主都选择了NoSQL技术作为优先考虑的方面。今年伊始,InfoQ中文站有幸邀请到凤凰网的孙立先生,为大家分享他之于NoSQL方面的经验和体会。


非 常荣幸能受邀在InfoQ开辟这样一个关于NoSQL的专栏,InfoQ是我非常尊重的一家技术媒体,同时我也希望借助InfoQ,在国内推动NoSQL 的发展,希望跟我一样有兴趣的朋友加入进来。这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景 中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。

NoSQL概念

随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)

NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。

传统关系数据库的瓶颈

传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。

在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。

到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。

Memcached+MySQL

后 来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员 们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多 台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。

Memcached 作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行 多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你 去面试,你说你有Memcached经验,肯定会加分的。

Mysql主从读写分离

由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。

分表分库

随 着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈, 而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。 同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就 在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。

MySQL的扩展性瓶颈

在 互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优 化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大 的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又 需要一种新的分库方式。

MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。

关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。

NOSQL的优势

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL 数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

总结

NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。

MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,NoSQL关注在存储上。

大并发大数量中的MYSQL瓶颈与NOSQL介绍

大并发大数量中的MYSQL瓶颈与NOSQL介绍的更多相关文章

  1. 【Itext】解决Itext5大并发大数据量下输出PDF发生内存溢出outofmemery异常

    尼玛,这个问题干扰了我两个星期!! 关键字 itext5 outofmemery 内存溢出 大数据 高并发 多线程 pdf 导出 报表 itext 并发 在读<<iText in Acti ...

  2. php 处理 大并发

    小谈php处理 大并发 大流量 大存储 一.判断大型网站的标准: 1.pv(page views)网页的浏览量: 概念:一个网站所有的页面,在24小时内被访问的总的次数.千万级别,百万级别 2. uv ...

  3. 如何在高并发的分布式系统中产生UUID

    一.数据库发号器 每一次都请求数据库,通过数据库的自增ID来获取全局唯一ID 对于小系统来说,这是一个简单有效的方案,不过也就不符合讨论情形中的高并发的场景. 首先,数据库自增ID需要锁表 而且,UU ...

  4. shell中读写mysql数据库

    本文介绍了如何在shell中读写mysql数据库.主要介绍了如何在shell 中连接mysql数据库,如何在shell中创建数据库,创建表,插入csv文件,读取mysql数据库,导出mysql数据库为 ...

  5. python3中的mysql数据库操作

    软硬件环境 OS X EI Capitan Python 3.5.1 mysql 5.6 前言 在开发中经常涉及到数据库的使用,而python对于数据库也有多种解决方法.本文以python3中的mys ...

  6. 一文总结高并发大数据量下MySQL开发规范【军规】

    在互联网公司中,MySQL是使用最多的数据库,那么在并发量大.数据量大的互联网业务中,如果高效的使用MySQL才能保证服务的稳定呢?根据本人多年运维管理经验的总结,梳理了一些核心的开发规范,希望能给大 ...

  7. 高并发大流量专题---10、MySQL数据库层的优化

    高并发大流量专题---10.MySQL数据库层的优化 一.总结 一句话总结: mysql先考虑做分布式缓存,过了缓存后就做mysql数据库层面的优化 1.mysql数据库层的优化的前面一层是什么? 数 ...

  8. 转载:把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架构,微服务,以及相关的项目管理等等,这样你的核心竞争力才会越来越高

    https://developer.51cto.com/art/202001/608984.htm 把你的精力专注在java,jvm原理,spring原理,mysql锁,事务,多线程,大并发,分布式架 ...

  9. 【已解决】phpMyAdmin中导入mysql数据库文件时出错:您可能正在上传很大的文件,请参考文档来寻找解决办法

    期间,用phpMyAdmin去导入90M左右的mysql数据库文件时出错: 您可能正在上传很大的文件,请参考文档来寻找解决方法. [解决过程] 1.很明显,是文件太大,无法导入.即上传文件大小有限制. ...

随机推荐

  1. url中去掉index.php,方便redirect()

    01 配置文件 return Array( 'URL_MODEL' => '2',); 02 index.php入口文件下面加入文件 .htaccess -->使用editplus--&g ...

  2. 各硬件设备在Linux中的文件名

  3. Java 4

    1.继承的问题 子类是父类的一个扩展,子类可以利用父类的属性与行为,这种情况子类会破坏父类的封装 为了保持父类良好的封装性,设计父类有以下规则: 如果要把某类设计为最终类则需要添加final修饰符,或 ...

  4. CentOS postgresql9.4

    yum install http://yum.postgresql.org/9.4/redhat/rhel-6-x86_64/pgdg-redhat94-9.4-1.noarch.rpm Once t ...

  5. HDU 3835 R(N)(枚举)

    题目链接 Problem Description We know that some positive integer x can be expressed as x=A^2+B^2(A,B are ...

  6. DigitalOcean VPS简介

    DigitalOcean是一家位于美国的云主机服务商,总部位于美国纽约,成立于2012年.由于价格低廉,高性能配置.灵活布置的优势,近些年来发展迅猛,成为中国站长圈们喜爱的品牌.(访问http://w ...

  7. C++ 中 delete 和 delete[] 的区别

    一直对 C++ 中 delete 和 delete[] 的区别不甚了解,今天遇到了,上网查了一下,得出了结论.做个备份,以免丢失. C++ 告诉我们在回收用 new 分配的单个对象的内存空间时用 de ...

  8. 洛谷-火柴棒等式-NOIP2008提高组复赛

    题目描述 Description 给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A.B.C是用火柴棍拼出的整数(若该数非零,则最高位不能是0).用火柴棍拼数字0-9的拼法如图所示: ...

  9. UILabel 的属性设置

    .设置字体样式(加粗) label.font = [UIFont boldSystemFontOfSize:30]; 6.设置字体类型 label.font = [UIFont fontWithNam ...

  10. zend guard Optimizer

    zend guard Optimizer PHP5.3+ URL:http://www.zend.com/en/products/guard/downloads Email:test001@test0 ...