Here is the note for lecture three.

the linear model

Linear model is a basic and important model in machine learning.



1. input representation

   

The data we get usually needs some changes, most of them is the input data. 

   
In linear model, 

                    input =(x1,x2,x3,x4,x5...xn)

   
then the model will be

                    model =(w1,w2,w3,w4,w5...wn)

   
That means we should use our learning algorithm to figure out the value of all these ws.
So it is clear that trying to 

do the input representation is necessary. Trying to pick out some features of the input as input representation.



2. linear classification

   

 
 
When it comes to classification, linear model will be taken into consideration. Learning algorithm uses lines to classify.

Giving a linear model, we provide the input, and then classification will be got by the output. eg.y=f(X); if f(X)>0 and f(X')<0

then X and X' belong to different parts.

   
As it mentions above, in linear model, there will be the same parameters as the input. So how to come out a correct model?

   
There is a basic learning algorithm called Perceptron Learning Algorithm, it's PLA.
In PLA, there will be an initial model.

and learning algorithm will fix it up according to the verification of its data.
Therefore, PLA is a algorithm that getting 

final hypothesis by several verifications.

   
So we can get linear model by PLA.



3. linear regression



   What is linear regression?

in fact, it is really common to us.
regression equals a real valued output, if you have a real

valued funtion, then you get a linear regression problem. Sometimes we need a linear model to deal with a linear regression 

problem.


 
 I come up with a model now.

                                      

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

   
the W and X are vector form. And I need figure out W to finish this model.

In fact, the problem have a really simple way to deal with. First, let us discuss with the error. f(X) is Our target function,

and we hope h(X) approximate f(X) as well as possible. However, there must be errors. We use square error in linear model, if E means error, then

                                 

X,Y,W are vectors.

   Of course, we want to minmize E. So we get derivate and equate it with 0



                                   

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

                                 

Well, as you see, we figure out W with matrix operation.(X and Y are the input data and output data we have got) Is it a simple method?



   
 Finally, the linear regression can be used in linear classification. In linear classification, the initial model could be fixed

out by method used in linear regression, and completed by PLA.

Note for video Machine Learning and Data Mining——Linear Model的更多相关文章

  1. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  2. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  3. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  4. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. Machine Learning - week 2 - Multivariate Linear Regression

    Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...

  7. Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  8. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  9. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

随机推荐

  1. 在Python中使用正则表达式同时匹配邮箱和电话并进行简单的分类

    在Python使用正则表达式需要使用re(regular exprssion)模块,使用正则表达式的难点就在于如何写好p=re.compile(r' 正则表达式')的内容. 下面是在Python中使用 ...

  2. 《学习opencv》笔记——矩阵和图像操作——cvSetIdentity,cvSolve,cvSplit,cvSub,cvSubS and cvSubRS

    矩阵和图像的操作 (1)cvSetIdentity函数 其结构 void cvSetIdentity(//将矩阵行与列相等的元素置为1.其余元素置为0 CvArr* arr//目标矩阵 ); 实例代码 ...

  3. POJ3189_Steady Cow Assignment(二分图多重匹配/网络流+二分构图)

    解题报告 http://blog.csdn.net/juncoder/article/details/38340447 题目传送门 题意: B个猪圈,N头猪.每头猪对每一个猪圈有一个惬意值.要求安排这 ...

  4. Python中列表的常用操作

    只整理重要常用的操作: append():尾部追加元素,参数只能为一个. extend():用列表扩展列表,参数为列表. insert():在指定位置插入元素,第一个参数为插入位置,第二个为参数为插入 ...

  5. C++运算符重载的方法

    运算符重载的方法是定义一个重载运算符的函数,在需要执行被重载的运算符时,系统就自动调用该函数,以实现相应的运算.也就是说,运算符重载是通过定义函数实现的. 运算符重载实质上是函数的重载 重载运算符的函 ...

  6. 函数alv下的颜色设置

    ABAP中的颜色代码是由4位字都组成的 cxyz    c:color的简写,颜色代码均以C开头 x:标准色代码,SAP中一共有7个标准色    y:反转颜色启用/关闭 1/0 z:增强颜色启用/关闭 ...

  7. Java实现定时任务的三种方法(转)

    在应用里经常都有用到在后台跑定时任务的需求.举个例子,比如需要在服务后台跑一个定时任务来进行非实时计算,清除临时数据.文件等.在本文里,我会给大家介绍3种不同的实现方法: 普通thread实现 Tim ...

  8. discuz!代码内置颜色大全(收藏)

    加闪烁字:[light]文字[/light] 加文字特效:[shadow=255,red,2]文字[/shadow]: 在标签的中间插入文字可以实现文字阴影特效,shadow内属性依次为宽度.颜色和边 ...

  9. 参加2013中国软件开发者大会(SDCC)会,听软件开发趋势

    1.SDCC        盛大召开的会议,既然参加了,就写篇博客记一下. 2.蒋公子     首先向大会主席台走来的是csdn老大...... 额,好像不是走过来的.蒋涛采用了个特殊的上台方式呢~ ...

  10. JAVA的反射机制学习笔记(二)

    上次写JAVA的反射机制学习笔记(一)的时候,还是7月22号,这些天就瞎忙活了.自己的步伐全然被打乱了~不能继续被动下去.得又一次找到自己的节奏. 4.获取类的Constructor 通过反射机制得到 ...