Here is the note for lecture three.

the linear model

Linear model is a basic and important model in machine learning.



1. input representation

   

The data we get usually needs some changes, most of them is the input data. 

   
In linear model, 

                    input =(x1,x2,x3,x4,x5...xn)

   
then the model will be

                    model =(w1,w2,w3,w4,w5...wn)

   
That means we should use our learning algorithm to figure out the value of all these ws.
So it is clear that trying to 

do the input representation is necessary. Trying to pick out some features of the input as input representation.



2. linear classification

   

 
 
When it comes to classification, linear model will be taken into consideration. Learning algorithm uses lines to classify.

Giving a linear model, we provide the input, and then classification will be got by the output. eg.y=f(X); if f(X)>0 and f(X')<0

then X and X' belong to different parts.

   
As it mentions above, in linear model, there will be the same parameters as the input. So how to come out a correct model?

   
There is a basic learning algorithm called Perceptron Learning Algorithm, it's PLA.
In PLA, there will be an initial model.

and learning algorithm will fix it up according to the verification of its data.
Therefore, PLA is a algorithm that getting 

final hypothesis by several verifications.

   
So we can get linear model by PLA.



3. linear regression



   What is linear regression?

in fact, it is really common to us.
regression equals a real valued output, if you have a real

valued funtion, then you get a linear regression problem. Sometimes we need a linear model to deal with a linear regression 

problem.


 
 I come up with a model now.

                                      

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

   
the W and X are vector form. And I need figure out W to finish this model.

In fact, the problem have a really simple way to deal with. First, let us discuss with the error. f(X) is Our target function,

and we hope h(X) approximate f(X) as well as possible. However, there must be errors. We use square error in linear model, if E means error, then

                                 

X,Y,W are vectors.

   Of course, we want to minmize E. So we get derivate and equate it with 0



                                   

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

                                 

Well, as you see, we figure out W with matrix operation.(X and Y are the input data and output data we have got) Is it a simple method?



   
 Finally, the linear regression can be used in linear classification. In linear classification, the initial model could be fixed

out by method used in linear regression, and completed by PLA.

Note for video Machine Learning and Data Mining——Linear Model的更多相关文章

  1. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  2. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  3. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  4. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. Machine Learning - week 2 - Multivariate Linear Regression

    Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...

  7. Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  8. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  9. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

随机推荐

  1. java内存管理简析

    作为java程序员,因为有虚拟机的自动内存管理,所以不需要再向C和C++程序员那样灾区写delete和free方法,但是java中是不是就不存在内存泄露问题呢,答案是否定的,java中一样存在内存泄漏 ...

  2. jsonp与cors跨域的一些理解

    浏览器的同源策略,即是浏览器之间要隔离不同域的内容,禁止互相操作. 比如,当你打开了多个网站,如果允许多个网站之间互相操作,那么其中一个木马网站就可以通过这种互相操作进行一系列的非法行为,获取你在各个 ...

  3. javascript面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型模式)

    面向对象可以把程序中的关键模块都视为对象,而模块拥有属性及方法.这样我们如果把一些属性及方法封装起来,日后使用将非常方便,也可以避免繁琐重复的工作.接下来将为大家讲解在JS中面向对象的实现.   工厂 ...

  4. 屏蔽EditText长按导致的弹出输入法的对话框

    做了个能手动拖动的EditText,但有个问题导致的体验很不好,就是手放上去开始拖,拖到一段距离后弹出个输入法的对话框,这根本不是我想要的效果,于是就想屏蔽它,结果在网上找到一句代码,放上去 顿时解决 ...

  5. HDU 3480 DP+斜率优化

    题意:给你n个数字,然后叫你从这些数字中选出m堆,使得每一堆的总和最小,一堆的总和就是这一堆中最大值减去最小值的平方,最后要使得所有堆加起来的总和最小. 思路:对这些数字排序之后,很容易想到DP解法, ...

  6. android花屏效果的实现(ViewPager的基本使用)

    1.程序运行效果图 二.代码实现 1.main.xml <RelativeLayout xmlns:android="http://schemas.android.com/apk/re ...

  7. shell字符串长度

    方法一 $ expr length "Find out the length of this string from Linux Bash shell." 57 方法二 str1= ...

  8. Git 使用规范流程(转)

    团队开发中,遵循一个合理.清晰的Git使用流程,是非常重要的. 否则,每个人都提交一堆杂乱无章的commit,项目很快就会变得难以协调和维护. 下面是ThoughtBot 的Git使用规范流程.我从中 ...

  9. java中遍历MAP,嵌套map的几种方法

    java中遍历MAP的几种方法 Map<String,String> map=new HashMap<String,String>();    map.put("us ...

  10. 用yum查询想安装的软件

    1.使用YUM查找软件包  命令:yum search~  2.列出所有可安装的软件包  命令:yum list  3.列出所有可更新的软件包  命令:yum list updates  4.列出所有 ...