解题报告

农场有k个挤奶机和c头牛,每头牛到每一台挤奶机距离不一样,每台挤奶机每天最多挤m头牛的奶。

寻找一个方案,安排每头牛到某一挤奶机挤奶,使得c头牛须要走的全部路程中的最大路程的最小值。

要使每一头牛都去挤奶,那么建完模型就要推断是否满流。

因为是多源多点的网络,如果源点0,汇点n+1(n=k+c)

源点到每一头牛的容量为1,每一台机器到汇点的容量为m;用flody求出随意一头牛到随意一台机器的最短路;

对于取最大距离的最小值能够用二分来找。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define inf 99999999
#define K 33
#define C 210
using namespace std;
int k,c,m,mmap[K+C][K+C],l[K+C],edge[K+C][K+C],n;
void flody()
{
for(int l=1; l<=n; l++)
{
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(mmap[i][j]>mmap[i][l]+mmap[l][j])
mmap[i][j]=mmap[i][l]+mmap[l][j];
}
}
}
}
int bfs()
{
memset(l,-1,sizeof(l));
queue<int>Q;
Q.push(0);
l[0]=0;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int i=0; i<=n+1; i++)
{
if(edge[u][i]&&l[i]==-1)
{
l[i]=l[u]+1;
Q.push(i);
}
}
}
if(l[n+1]>0)return 1;
else return 0;
}
void G(int mid)
{
int i,j;
memset(edge,0,sizeof(edge));
for(i=1; i<=k; i++)
edge[i][n+1]=m;
for(i=k+1; i<=n; i++)
edge[0][i]=1;
for(i=k+1; i<=n; i++)
{
for(j=1; j<=k; j++)
{
if(mmap[i][j]<=mid)
edge[i][j]=1;
else edge[i][j]=0;
}
}
}
int dfs(int x,int f)
{
int a;
if(x==n+1)return f;
for(int i=0; i<=n+1; i++)
{
if(edge[x][i]&&l[i]==l[x]+1&&(a=dfs(i,min(f,edge[x][i]))))
{
edge[x][i]-=a;
edge[i][x]+=a;
return a;
}
}
return 0;
}
int dinic(int mid)
{
int ans=0,a;
G(mid);
while(bfs())
while(a=dfs(0,inf))
ans+=a;
return ans;
}
int main()
{
int i,j;
while(~scanf("%d%d%d",&k,&c,&m))
{
n=k+c;
for(i=1; i<=n; i++)
{
for(j=1; j<=n; j++)
{
scanf("%d",&mmap[i][j]);
if(!mmap[i][j])
mmap[i][j]=inf;
}
}
flody();
int L=0,R=20000;
while(L<R)
{
int mid=(L+R)/2;
int ans=dinic(mid);
if(ans>=c)R=mid;
else L=mid+1;
}
printf("%d\n",R);
}
return 0;
}

Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 11664   Accepted: 4238
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow
locations are named by ID numbers K+1..K+C. 



Each milking point can "process" at most M (1 <= M <= 15) cows each day. 



Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M. 



* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

POJ2112_Optimal Milking(网洛流最大流Dinic+最短路Flody+二分)的更多相关文章

  1. P3376 【模板】网络最大流( Edmonds-krap、Dinic、ISAP 算法)

    P3376 [模板]网络最大流( Edmonds-krap.Dinic.ISAP 算法) 题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入格式 第一行包含四个正整数N.M.S ...

  2. 最大流EK和Dinic算法

    最大流EK和Dinic算法 EK算法 最朴素的求最大流的算法. 做法:不停的寻找增广路,直到找不到为止 代码如下: @Frosero #include <cstdio> #include ...

  3. hdu3313 最大流找关键点,或者最短路找关键点.

    题意:      给你一个有向图,然后给你起点和终点,问你从起点到终点有多少个关键点,如果当前的这个点删除了就无法从起点到终点,那么这个点就是一个关键点.. 思路:      (1)有两种做法,我用的 ...

  4. [源码]ObjectIOStream 对象流 ByteArrayIOStream 数组流 内存流 ZipOutputStream 压缩流

    1.对象流 import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.File ...

  5. IO流03_流的分类和概述

    [概述] Java的IO流是实现输入/输出的基础,它可以方便的实现数据的输入/输出操作. Java中把不同的输入/输出源(键盘.文件.网络连接)抽象表述为"流"(Stream). ...

  6. Java基础知识强化之IO流笔记41:字符流缓冲流之复制文本文件案例02(使用 [ newLine() / readLine() ] )(重要)

    1. 使用字符流缓冲流的特殊功能 [ newLine() / readLine() ] 需求:把当前项目目录下的a.txt内容复制到当前项目目录下的b.txt中  数据源: a.txt -- 读取数据 ...

  7. Java基础知识强化之IO流笔记39:字符流缓冲流之复制文本文件案例01

    1. 字符流缓冲流之复制文本文件案例 需求:把当前项目目录下的a.txt内容复制到当前项目目录下的b.txt中 数据源: a.txt -- 读取数据 -- 字符转换流 -- InputStreamRe ...

  8. Java基础知识强化之IO流笔记38:字符流缓冲流之BufferedWriter / BufferedReader使用

    1. 字符流缓冲流: 字符流为了高效读写,也提供了对应的字符缓冲流. BufferedWriter:字符缓冲输出流 BufferedReader:字符缓冲输入流 2. BufferedWriter使用 ...

  9. JAVA之旅(二十七)——字节流的缓冲区,拷贝mp3,自定义字节流缓冲区,读取键盘录入,转换流InputStreamReader,写入转换流,流操作的规律

    JAVA之旅(二十七)--字节流的缓冲区,拷贝mp3,自定义字节流缓冲区,读取键盘录入,转换流InputStreamReader,写入转换流,流操作的规律 我们继续来聊聊I/O 一.字节流的缓冲区 这 ...

随机推荐

  1. hdu 4614 Vases and Flowers (二分 线段树)

    题目大意:爱丽丝有N个花瓶,每个花瓶最多放一朵花.然后又如下两个操作. 1:A B    从第A个花瓶开始,往后依次插B朵花,直到不能插为止.如果一朵花都不能插入就输出“can.....”,否则输出第 ...

  2. C# -- 什么是方法签名?

    签名指的是返回值和参数. 比如 : public void A ( int p1,int p2){} public void B ( int q1,int q2){} 的签名相同. 而 public ...

  3. Java 自定义日志写入

    /** * 将信息写入到日志 * @param content * @return * @throws IOException */ public static boolean writeLog(St ...

  4. Ch02 从零开始实例学习5

    演练:添加模型 原文链接:http://www.asp.net/mvc/tutorials/mvc-4/getting-started-with-aspnet-mvc4/adding-a-model ...

  5. Codeforces Round #254 (Div. 2)D(预计)

    D. DZY Loves FFT time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  6. SDL2源码分析6:拷贝到渲染器(SDL_RenderCopy())

    ===================================================== SDL源码分析系列文章列表: SDL2源码分析1:初始化(SDL_Init()) SDL2源 ...

  7. git clone cm source &amp; cm vs android version

    $ git clone https://github.com/CyanogenMod/android_packages_apps_DeskClock.git -b cm-9.0.0 CM4代表(And ...

  8. SQL Server使用问题总结

    1.datetime,smalldatetime,date的区别 1)datetime 从1753年1月1日到9999年12月31日的日期和时间数据,精确度为百分之三秒(等于   3.33毫秒或0.0 ...

  9. 怎样在Windows和Linux下写相同的代码

    目前,Linux在国内受到了越来越多的业内人士和用户的青睐.相信在不久的将来,在国内为Linux开发 的应用软件将会有很大的增加(这不,金山正在招兵买马移植WPS呢).由于未来将会是Windows和L ...

  10. hdu4726贪心

    Kia's Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...