模型实现代码,关键是train函数和predict函数,都很容易。

#include <iostream>
#include <string>
#include <math.h>
#include "LogisticRegression.h"
using namespace std; LogisticRegression::LogisticRegression(
int size, // N
int in, // n_in
int out // n_out
)
{
N = size;
n_in = in;
n_out = out; // initialize W, b
// W[n_out][n_in], b[n_out]
W = new double*[n_out];
for(int i=0; i<n_out; i++)
W[i] = new double[n_in];
b = new double[n_out]; for(int i=0; i<n_out; i++)
{
for(int j=0; j<n_in; j++)
{
W[i][j] = 0;
}
b[i] = 0;
}
} LogisticRegression::~LogisticRegression()
{
for(int i=0; i<n_out; i++)
delete[] W[i];
delete[] W;
delete[] b;
} void LogisticRegression::train (
int *x, // the input from input nodes in training set
int *y, // the output from output nodes in training set
double lr // the learning rate
)
{
// the probability of P(y|x)
double *p_y_given_x = new double[n_out];
// the tmp variable which is not necessary being an array
double *dy = new double[n_out]; // step 1: calculate the output of softmax given input
for(int i=0; i<n_out; i++)
{
// initialize
p_y_given_x[i] = 0;
for(int j=0; j<n_in; j++)
{
// the weight of networks
p_y_given_x[i] += W[i][j] * x[j];
}
// the bias
p_y_given_x[i] += b[i];
}
// the softmax value
softmax(p_y_given_x); // step 2: update the weight of networks
// w_new = w_old + learningRate * differential (导数)
// = w_old + learningRate * x (1{y_i=y} - p_yi_given_x)
// = w_old + learningRate * x * (y - p_y_given_x)
for(int i=0; i<n_out; i++)
{
dy[i] = y[i] - p_y_given_x[i];
for(int j=0; j<n_in; j++)
{
W[i][j] += lr * dy[i] * x[j] / N;
}
b[i] += lr * dy[i] / N;
}
delete[] p_y_given_x;
delete[] dy;
} void LogisticRegression::softmax (double *x)
{
double max = 0.0;
double sum = 0.0; // step1: get the max in the X vector
for(int i=0; i<n_out; i++)
if(max < x[i])
max = x[i];
// step 2: normalization and softmax
// normalize -- 'x[i]-max', it's not necessary in traditional LR.
// I wonder why it appears here?
for(int i=0; i<n_out; i++)
{
x[i] = exp(x[i] - max);
sum += x[i];
}
for(int i=0; i<n_out; i++)
x[i] /= sum;
} void LogisticRegression::predict(
int *x, // the input from input nodes in testing set
double *y // the calculated softmax probability
)
{
// get the softmax output value given the current networks
for(int i=0; i<n_out; i++)
{
y[i] = 0;
for(int j=0; j<n_in; j++)
{
y[i] += W[i][j] * x[j];
}
y[i] += b[i];
} softmax(y);
}

【deep learning学习笔记】注释yusugomori的LR代码 --- LogisticRegression.cpp的更多相关文章

  1. 【deep learning学习笔记】注释yusugomori的LR代码 --- LogisticRegression.h

    继续看yusugomori的代码,看逻辑回归.在DBN(Deep Blief Network)中,下面几层是RBM,最上层就是LR了.关于回归.二类回归.以及逻辑回归,资料就是前面转的几篇.套路就是设 ...

  2. 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h

    DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...

  3. 【deep learning学习笔记】注释yusugomori的RBM代码 --- 头文件

    百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python ...

  4. [置顶] Deep Learning 学习笔记

    一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...

  5. Deep Learning 学习笔记(8):自编码器( Autoencoders )

    之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...

  6. 【deep learning学习笔记】Recommending music on Spotify with deep learning

    主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲 ...

  7. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  8. paper 149:Deep Learning 学习笔记(一)

     1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...

  9. Deep Learning 学习笔记——第9章

    总览: 本章所讲的知识点包括>>>> 1.描述卷积操作 2.解释使用卷积的原因 3.描述pooling操作 4.卷积在实践应用中的变化形式 5.卷积如何适应输入数据 6.CNN ...

随机推荐

  1. nginx记录响应与POST请求日志

    生产环境中的某些api出现故障,但是问题无法重现,但是又很想解决掉问题以及我们新项目上线,需要跟踪请求与响应的信息,可以预先找到一些bug,减少大面积的损失. 安装nginx与ngx_lua 响应日志 ...

  2. Java -强引用&弱引用

    ⑴强引用(StrongReference) 就是通过new得的对象引用 强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.当内存空间不足,Java虚拟机宁愿抛出OutOfMe ...

  3. JS 2016-09-30T22:04:27.5220743+08:00 转换为日期

    1.转换代码 new Date(item.CreatedDate).Format("yyyy-MM-dd hh:mm") 2.需要拓展的方法 // 对Date的扩展,将 Date ...

  4. kiddouk/redisco

    kiddouk/redisco A Python Library for Simple Models and Containers Persisted in Redis

  5. xend调用xenstore的出错揭秘

    近期发现几例问题,均是xend里面报了同一个错误 File "/usr/lib64/python2.4/site-packages/xen/xend/xenstore/xstransact. ...

  6. Android组件:Fragment切换后保存状态

    之前写的第一篇Fragment实例,和大多数人一开始学的一样,都是通过FragmentTransaction的replace方法来实现,replace方法相当于先移除remove()原来所有已存在的f ...

  7. GCC 编译使用动态链接库和静态链接库的方法

    1 库的分类 依据链接时期的不同,库又有静态库和动态库之分. 静态库是在链接阶段被链接的.所以生成的可执行文件就不受库的影响了.即使库被删除了,程序依旧能够成功执行. 有别于静态库,动态库的链接是在程 ...

  8. UVA 10317 - Equating Equations (背包)

    Problem F Equating Equations Input: standard input Output: standard output Time Limit: 6 seconds Mem ...

  9. 《WCF技术剖析》博文系列汇总[持续更新中]

    原文:<WCF技术剖析>博文系列汇总[持续更新中] 近半年以来,一直忙于我的第一本WCF专著<WCF技术剖析(卷1)>的写作,一直无暇管理自己的Blog.在<WCF技术剖 ...

  10. 《火球——UML大战需求分析》(第1章 大话UML)——1.5 小结和练习

    说明: <火球——UML大战需求分析>是我撰写的一本关于需求分析及UML方面的书,我将会在CSDN上为大家分享前面几章的内容,总字数在几万以上,图片有数十张.欢迎你按文章的序号顺序阅读,谢 ...