bzoj1025 [SCOI2009]游戏——因数DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025
这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4473192.html
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,pri[],cnt;
long long f[][],ans;
bool vis[];
void init()
{
for(int i=;i<=n;i++)
{
if(!vis[i])vis[i]=,pri[++cnt]=i;
for(int j=;j<=cnt&&i*pri[j]<=n;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
int main()
{
scanf("%d",&n);
init();
f[][]=;
for(int i=;i<=cnt;i++)
{
for(int j=;j<=n;j++)f[i][j]+=f[i-][j];
for(int j=;j<=n;j++)
for(int k=pri[i];j-k>=;k*=pri[i])
f[i][j]+=f[i-][j-k];
}
for(int i=;i<=n;i++)
ans+=f[cnt][i];
printf("%lld",ans);
return ;
}
bzoj1025 [SCOI2009]游戏——因数DP的更多相关文章
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
- BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】
题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...
- [BZOJ1025][SCOI2009]游戏 DP+置换群
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...
- 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)
传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...
- bzoj1025: [SCOI2009]游戏(DP)
题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...
- [BZOJ1025] [SCOI2009]游戏 解题报告
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- BZOJ1025: [SCOI2009]游戏
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- bzoj1025: [SCOI2009] 游戏 6
DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...
随机推荐
- Bestcoder Tom and matrix
问题描述 Tom放学回家的路上,看到天空中出现一个矩阵.Tom发现,如果矩阵的行.列从0开始标号,第i行第j列的数记为ai,j,那么ai,j=Cji 如果i < j,那么ai,j=0 Tom突发 ...
- Hadoop安装和基本单机部署
下载安装 # 下载 $ cd /usr/local $ wget http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.9.2/hadoo ...
- 《深入理解mybatis原理》 Mybatis初始化机制详解
对于任何框架而言,在使用前都要进行一系列的初始化,MyBatis也不例外.本章将通过以下几点详细介绍MyBatis的初始化过程. 1.MyBatis的初始化做了什么 2. MyBatis基于XML配置 ...
- 【Java TCP/IP Socket】深入剖析socket——TCP套接字的生命周期
建立TCP连接 新的Socket实例创建后,就立即能用于发送和接收数据.也就是说,当Socket实例返回时,它已经连接到了一个远程终端,并通过协议的底层实现完成了TCP消息或握手信息的交换. ...
- [vxlan] 二 什么是VXLAN
VXLAN是一种mac in UDP的技术.简单讲就是传统的二层帧被封装到了UDP的package中.通过UDP的IP网络发送到目的地然后再解封装. VXLAN 跟VLAN对比,最重要的一个概念就是V ...
- (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树
CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...
- docker save docker load
docker save && docker load docker save 镜像1 镜像2 | gzip > images.tar.gz 打包镜像为压缩文件 docker sa ...
- EasyDarwin开源手机直播方案:EasyPusher手机直播推送,EasyDarwin流媒体server,EasyPlayer手机播放器
在不断进行EasyDarwin开源流媒体server的功能和性能完好的同一时候,我们也配套实现了眼下在安防和移动互联网行业比較火热的移动端手机直播方案,主要就是我们的 EasyPusher直播推送项目 ...
- vs 总结
1.可以通过 视图--->属性管理器 来直接配置opencv,一键搞定 2.按住shift键不放,然后移动方向键,可以选中一路数据点. 3.调试程序的利器,调用堆栈,可以定位到程序死的那一刻. ...
- 新生入学V3.0颗粒归仓
新生入学系统V3.0接近尾声.每次做项目都有不一样的收获.V1.0,V2.0主要是熟悉了整个项目流程是怎样进行的,可行性分析--需求分析(原型图Axure)--实体设计(PD)--类图时序图(EA)- ...