原文链接:OpenCV3 Java 机器学习使用方法汇总

 前言

按道理来说,C++版本的OpenCV训练的版本XML文件,在java中可以无缝使用。但要注意OpenCV本身的版本问题。从2.4 到3.x版本出现了很大的改变,XML文件本身的存储格式本身也不同,不能通用。

opencv提供了非常多的机器学习算法用于研究。这里对这些算法进行分类学习和研究,以抛砖引玉。这里使用的机器学习算法包括:人工神经网络,boost,决策树,最近邻,逻辑回归,贝叶斯,随机森林,SVM等算法等。

机器学习的过程相同,都要经历1、收集样本数据sampleData2.训练分类器mode3.对测试数据testData进行预测。这里使用一个在别处看到的例子,利用身高体重等原始信息预测男女的概率。通过一些简单的数据学习,用测试数据预测男女概率。

实例代码:

import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.TermCriteria;
import org.opencv.ml.ANN_MLP;
import org.opencv.ml.Boost;
import org.opencv.ml.DTrees;
import org.opencv.ml.KNearest;
import org.opencv.ml.LogisticRegression;
import org.opencv.ml.Ml;
import org.opencv.ml.NormalBayesClassifier;
import org.opencv.ml.RTrees;
import org.opencv.ml.SVM;
import org.opencv.ml.SVMSGD;
import org.opencv.ml.TrainData; public class ML {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// 训练数据,两个维度,表示身高和体重
float[] trainingData = { 186, 80, 185, 81, 160, 50, 161, 48 };
// 训练标签数据,前两个表示男生0,后两个表示女生1,由于使用了多种机器学习算法,他们的输入有些不一样,所以labelsMat有三种
float[] labels = { 0f, 0f, 0f, 0f, 1f, 1f, 1f, 1f };
int[] labels2 = { 0, 0, 1, 1 };
float[] labels3 = { 0, 0, 1, 1 };
// 测试数据,先男后女
float[] test = { 184, 79, 159, 50 }; Mat trainingDataMat = new Mat(4, 2, CvType.CV_32FC1);
trainingDataMat.put(0, 0, trainingData); Mat labelsMat = new Mat(4, 2, CvType.CV_32FC1);
labelsMat.put(0, 0, labels); Mat labelsMat2 = new Mat(4, 1, CvType.CV_32SC1);
labelsMat2.put(0, 0, labels2); Mat labelsMat3 = new Mat(4, 1, CvType.CV_32FC1);
labelsMat3.put(0, 0, labels3); Mat sampleMat = new Mat(2, 2, CvType.CV_32FC1);
sampleMat.put(0, 0, test); MyAnn(trainingDataMat, labelsMat, sampleMat);
MyBoost(trainingDataMat, labelsMat2, sampleMat);
MyDtrees(trainingDataMat, labelsMat2, sampleMat);
MyKnn(trainingDataMat, labelsMat3, sampleMat);
MyLogisticRegression(trainingDataMat, labelsMat3, sampleMat);
MyNormalBayes(trainingDataMat, labelsMat2, sampleMat);
MyRTrees(trainingDataMat, labelsMat2, sampleMat);
MySvm(trainingDataMat, labelsMat2, sampleMat);
MySvmsgd(trainingDataMat, labelsMat2, sampleMat);
} // 人工神经网络
public static Mat MyAnn(Mat trainingData, Mat labels, Mat testData) {
// train data using aNN
TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
Mat layerSizes = new Mat(1, 4, CvType.CV_32FC1);
// 含有两个隐含层的网络结构,输入、输出层各两个节点,每个隐含层含两个节点
layerSizes.put(0, 0, new float[] { 2, 2, 2, 2 });
ANN_MLP ann = ANN_MLP.create();
ann.setLayerSizes(layerSizes);
ann.setTrainMethod(ANN_MLP.BACKPROP);
ann.setBackpropWeightScale(0.1);
ann.setBackpropMomentumScale(0.1);
ann.setActivationFunction(ANN_MLP.SIGMOID_SYM, 1, 1);
ann.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER + TermCriteria.EPS, 300, 0.0));
boolean success = ann.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("Ann training result: " + success);
// ann.save("D:/bp.xml");//存储模型
// ann.load("D:/bp.xml");//读取模型 // 测试数据
Mat responseMat = new Mat();
ann.predict(testData, responseMat, 0);
System.out.println("Ann responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.size().height; i++) {
if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] >= 1)
System.out.println("Girl\n");
if (responseMat.get(i, 0)[0] + responseMat.get(i, i)[0] < 1)
System.out.println("Boy\n");
}
return responseMat;
} // Boost
public static Mat MyBoost(Mat trainingData, Mat labels, Mat testData) {
Boost boost = Boost.create();
// boost.setBoostType(Boost.DISCRETE);
boost.setBoostType(Boost.GENTLE);
boost.setWeakCount(2);
boost.setWeightTrimRate(0.95);
boost.setMaxDepth(2);
boost.setUseSurrogates(false);
boost.setPriors(new Mat()); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = boost.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("Boost training result: " + success);
// boost.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat();
float response = boost.predict(testData, responseMat, 0);
System.out.println("Boost responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // 决策树
public static Mat MyDtrees(Mat trainingData, Mat labels, Mat testData) {
DTrees dtree = DTrees.create(); // 创建分类器
dtree.setMaxDepth(8); // 设置最大深度
dtree.setMinSampleCount(2);
dtree.setUseSurrogates(false);
dtree.setCVFolds(0); // 交叉验证
dtree.setUse1SERule(false);
dtree.setTruncatePrunedTree(false); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = dtree.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("Dtrees training result: " + success);
// dtree.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat();
float response = dtree.predict(testData, responseMat, 0);
System.out.println("Dtrees responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // K最邻近
public static Mat MyKnn(Mat trainingData, Mat labels, Mat testData) {
final int K = 2;
TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
KNearest knn = KNearest.create();
boolean success = knn.train(trainingData, Ml.ROW_SAMPLE, labels);
System.out.println("Knn training result: " + success);
// knn.save("D:/bp.xml");//存储模型 // find the nearest neighbours of test data
Mat results = new Mat();
Mat neighborResponses = new Mat();
Mat dists = new Mat();
knn.findNearest(testData, K, results, neighborResponses, dists);
System.out.println("results:\n" + results.dump());
System.out.println("Knn neighborResponses:\n" + neighborResponses.dump());
System.out.println("dists:\n" + dists.dump());
for (int i = 0; i < results.height(); i++) {
if (results.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (results.get(i, 0)[0] == 1)
System.out.println("Girl\n");
} return results;
} // 逻辑回归
public static Mat MyLogisticRegression(Mat trainingData, Mat labels, Mat testData) {
LogisticRegression lr = LogisticRegression.create(); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = lr.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("LogisticRegression training result: " + success);
// lr.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat();
float response = lr.predict(testData, responseMat, 0);
System.out.println("LogisticRegression responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // 贝叶斯
public static Mat MyNormalBayes(Mat trainingData, Mat labels, Mat testData) {
NormalBayesClassifier nb = NormalBayesClassifier.create(); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = nb.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("NormalBayes training result: " + success);
// nb.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat();
float response = nb.predict(testData, responseMat, 0);
System.out.println("NormalBayes responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // 随机森林
public static Mat MyRTrees(Mat trainingData, Mat labels, Mat testData) {
RTrees rtrees = RTrees.create();
rtrees.setMaxDepth(4);
rtrees.setMinSampleCount(2);
rtrees.setRegressionAccuracy(0.f);
rtrees.setUseSurrogates(false);
rtrees.setMaxCategories(16);
rtrees.setPriors(new Mat());
rtrees.setCalculateVarImportance(false);
rtrees.setActiveVarCount(1);
rtrees.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, 5, 0));
TrainData tData = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = rtrees.train(tData.getSamples(), Ml.ROW_SAMPLE, tData.getResponses());
System.out.println("Rtrees training result: " + success);
// rtrees.save("D:/bp.xml");//存储模型 Mat responseMat = new Mat();
rtrees.predict(testData, responseMat, 0);
System.out.println("Rtrees responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // 支持向量机
public static Mat MySvm(Mat trainingData, Mat labels, Mat testData) {
SVM svm = SVM.create();
svm.setKernel(SVM.LINEAR);
svm.setType(SVM.C_SVC);
TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0);
svm.setTermCriteria(criteria);
svm.setGamma(0.5);
svm.setNu(0.5);
svm.setC(1); TrainData td = TrainData.create(trainingData, Ml.ROW_SAMPLE, labels);
boolean success = svm.train(td.getSamples(), Ml.ROW_SAMPLE, td.getResponses());
System.out.println("Svm training result: " + success);
// svm.save("D:/bp.xml");//存储模型
// svm.load("D:/bp.xml");//读取模型 Mat responseMat = new Mat();
svm.predict(testData, responseMat, 0);
System.out.println("SVM responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
} // SGD支持向量机
public static Mat MySvmsgd(Mat trainingData, Mat labels, Mat testData) {
SVMSGD Svmsgd = SVMSGD.create();
TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 1000, 0);
Svmsgd.setTermCriteria(criteria);
Svmsgd.setInitialStepSize(2);
Svmsgd.setSvmsgdType(SVMSGD.SGD);
Svmsgd.setMarginRegularization(0.5f);
boolean success = Svmsgd.train(trainingData, Ml.ROW_SAMPLE, labels);
System.out.println("SVMSGD training result: " + success);
// svm.save("D:/bp.xml");//存储模型
// svm.load("D:/bp.xml");//读取模型 Mat responseMat = new Mat();
Svmsgd.predict(testData, responseMat, 0);
System.out.println("SVMSGD responseMat:\n" + responseMat.dump());
for (int i = 0; i < responseMat.height(); i++) {
if (responseMat.get(i, 0)[0] == 0)
System.out.println("Boy\n");
if (responseMat.get(i, 0)[0] == 1)
System.out.println("Girl\n");
}
return responseMat;
}
}

备注:作者的代码运行无误,可直接测试。

OpenCV3 Java 机器学习使用方法汇总的更多相关文章

  1. java事件响应方法汇总(容器类监听、监听器类、AbstractAction、反射)

    Java图形用户界面中,处理事件时所必须的步骤是: 1.创建接受响应的组件(控件)2.实现相关事件监听接口3.注册事件源的动作监听器4.事件触发时的事件处理 相应的可以通过以下的集中方式来作出事件响应 ...

  2. java实现时钟方法汇总

    import java.awt.Dimension; import java.text.SimpleDateFormat; import java.util.Calendar; import java ...

  3. Java实现时间动态显示方法汇总

    这篇文章主要介绍了Java实现时间动态显示方法汇总,很实用的功能,需要的朋友可以参考下 本文所述实例可以实现Java在界面上动态的显示时间.具体实现方法汇总如下: 1.方法一 用TimerTask: ...

  4. java机器学习工具包

    下面是25个Java机器学习的工具&&库列表: 1. Weka 是一个数据挖掘任务机器学习算法的集合.这些算法可以直接应用于数据集或者在你自己的Java代码中调用.Weka 包含 数据 ...

  5. java面试笔试大汇总

    java面试笔试题大汇总5 JAVA相关基础知识 1.面向对象的特征有哪些方面 1.抽象:2.继承:3.封装:4. 多态性: 2.String是最基本的数据类型吗? 基本数据类型包括byte.int. ...

  6. 25个Java机器学习工具和库

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预 ...

  7. Linux下查看线程数的几种方法汇总

    Linux下查看线程数的几种方法汇总 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Linux下查看某个进程的线程数量 pstree命令以树状图显示进程间的关系(display ...

  8. 25个Java机器学习工具&库--转载

    本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习算法.这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用.Weka包括一系列的工具,如数据预 ...

  9. 转:25个Java机器学习工具和库

    转自:http://www.cnblogs.com/data2value/p/5419864.html 本列表总结了25个Java机器学习工具&库: 1. Weka集成了数据挖掘工作的机器学习 ...

随机推荐

  1. - > 网络流(【最大流】草地排水模板题)

    1993 草地排水 USACO  时间限制: 2 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 在农夫约翰的农场上,每 ...

  2. SVN提交时报错:Commit blocked by pre-commit hook (exit code 1) with no output.

    可能的原因: 提交代码的SVN命令中,Comment长度短了.参考:http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-howto-minl ...

  3. ArcGIS 10.1 for Server安装教程系列—— Linux下的单机安装

    http://www.oschina.net/question/565065_81231      因为Linux具有稳定,功能强大等特性,因此常常被用来做为企业内部的服务器,我们的很多用户也是将Ar ...

  4. Python中range和xrange的异同之处

    range     函数说明:range([start,] stop[, step]).依据start与stop指定的范围以及step设定的步长,生成一个序列. range演示样例:  >> ...

  5. java中inputstream的使用

    java中的inputstream是一个面向字节的流抽象类,其依据详细应用派生出各种详细的类. 比方FileInputStream就是继承于InputStream,专门用来读取文件流的对象,其详细继承 ...

  6. UVA 11748 - Rigging Elections(dfs)

    UVA 11748 - Rigging Elections option=com_onlinejudge&Itemid=8&page=show_problem&category ...

  7. HTTP的GET和POST请求

    1.GET请求: 格式例如以下: request-line headers blank-line request-body 如图是我用wireshark截的一个GET请求的HTTP首部: GET请求发 ...

  8. C++链表冒泡,归并,插入排序(纯指针)

    #include <iostream> using namespace std; //别问我为什么要写链表的冒泡排序. struct Node { int data; Node *next ...

  9. 【数学】mex是什么

    最近在看博弈论,SG函数,所以什么是mex呢 然后百度了一下得到: mex(S) 的值为集合 S 中没有出现过的最小自然数.例如,mex({1,2}) = 0.mex({0,1,2,3}) = 4

  10. golang函数——可以为类型(包括内置数据类型)定义函数,类似类方法,同时支持多返回值

    不可或缺的函数,在Go中定义函数的方式如下: func (p myType ) funcName ( a, b int , c string ) ( r , s int ) { return } 通过 ...