洛谷 P4317 花神的数论题 || bzoj3209
https://www.lydsy.com/JudgeOnline/problem.php?id=3209
https://www.luogu.org/problemnew/show/P4317
设cnt(x)为x在二进制下1的个数
很显然,要对于所有k,统计1<=i<=n中cnt(i)==k的i的个数
可以发现如果x二进制只由1组成,那么可以O(logx)计算出这些数
因此,可以把[1,n]用数位dp的思想拆开
对于n二进制中每一个1,试着使得它变为0,那么后面所有二进制位可以任意取,前面取的二进制位都是固定的,可以O(log)求这个范围内的贡献了
最后n自身要特判
调试记录:
1.尝试用求阶乘和阶乘逆元的方法直接求组合数,但是发现找不到如此大的质数,乘法也爆longlong麻烦;事实上在这里也的确比递推组合数麻烦得多
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
ll num[],nt[];
ll n,m,fac[],ifac[],ans=;
ll c[][];
ll poww(ll a,ll b,ll md)
{
ll ans=,base=a;
for(;b;base=base*base%md,b>>=)
if(b&)
ans=ans*base%md;
return ans;
}
void solve(ll n,ll *ans)//n位全1二进制答案
{
for(ll i=;i<=n;i++) ans[i]=c[n][i];
}
int main()
{
ll i,j,t;
for(i=;i<=;i++) c[i][]=;
for(i=;i<=;i++)
for(j=;j<=i;j++)
c[i][j]=c[i-][j]+c[i-][j-];
scanf("%lld",&n);m=n;
m&=(~1LL);
t=__builtin_popcountll(m);
num[t]++;
if(m!=n) num[__builtin_popcountll(n)]++;
for(i=;i<=;i++)
{
m&=(~(1LL<<(i-)));
t=__builtin_popcountll(m);
if(n&(1LL<<(i-)))
{
solve(i-,nt);
for(j=;j<=i-;j++)
num[j+t]+=nt[j];
}
}
//for(i=1;i<=60;i++) printf("%lld %lld\n",i,num[i]);
for(i=;i<=;i++) ans=ans*poww(i,num[i],)%;
printf("%lld",ans);
return ;
}
洛谷 P4317 花神的数论题 || bzoj3209的更多相关文章
- DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)
玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...
- 洛谷P4317 花神的数论题
洛谷题目链接 数位$dp$ 我们对$n$进行二进制拆分,于是就阔以像十进制一样数位$dp$了,基本就是套模板.. 接下来是美滋滋的代码时间~~~ #include<iostream> #i ...
- 洛谷 P4317 花神的数论题(组合数)
题面 luogu 题解 组合数 枚举有多少个\(1\),求出有多少种数 扫描\(n\)的每一位\(1\), 强制选\(0\)然后组合数算一下有多少种方案 Code #include<bits/s ...
- P4317 花神的数论题
题目 洛谷 数学方法学不会%>_<% 做法 爆搜二进制下存在\(i\)位\(1\)的情况,然后快速幂乘起来 My complete code #include<bits/stdc++ ...
- P4317 花神的数论题 dp
这题我一开始就想到数位dp了,其实好像也不是很难,但是自己写不出来...常规套路,f[i][j][k][t],从后往前填数,i位,j代表是否卡着上沿,k是现在有几个1,t是想要有几个.记忆化搜索就ok ...
- Luogu P4317 花神的数论题
也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...
- P4317 花神的数论题 动态规划?数位DP
思路:数位$DP$ 提交:5次(其实之前A过,但是调了调当初的程序.本次是2次AC的) 题解: 我们分别求出$sum(x)=i$,对于一个$i$,有几个$x$,然后我们就可以快速幂解决. 至于求个数用 ...
- P4317 花神的数论题,关于luogu题解粉兔做法的理解
link 题意 设 \(\text{sum}(i)\) 表示 \(i\) 的二进制表示中 \(1\) 的个数.给出一个正整数 \(N\) ,求 \(\prod_{i=1}^{N}\text{sum}( ...
- 【洛谷】4317:花神的数论题【数位DP】
P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...
随机推荐
- 在MVC中使用泛型仓储模式和工作单元来进行增删查改
原文链接:http://www.c-sharpcorner.com/UploadFile/3d39b4/crud-operations-using-the-generic-repository-pat ...
- collection 模块 双端队列
单端队列 用于同一进程中的队列,可以叫做单进程队列. queue 遵循先进先出,先进去的必须先出来 1.先进先出: impore queue q = queue.Queue() 实例化一个对象 q.p ...
- jvm 命令
jps jps主要用来输出JVM中运行的进程状态信息.语法格式如下: jps [options] [hostid] 如果不指定hostid就默认为当前主机或服务器. -q 不输出类名.Jar名和传入 ...
- archlinux yaourt安装 以及出错细节 database file for "archlinuxfr" does not exist.
archlinux yaourt安装 但一直报错如下: :: Synchronizing package databases... core is up to date extra is u ...
- HBase2.0新特性之In-Memory Compaction
In-Memory Compaction是HBase2.0中的重要特性之一,通过在内存中引入LSM结构,减少多余数据,实现降低flush频率和减小写放大的效果.本文根据HBase2.0中相关代码以及社 ...
- hadoop yarn namenode datanoe 启动异常问题解决 分析日志
cat logs/hadoop-root-datanode-hadoop1.log ********************************************************** ...
- Cache 简介
一.什么是缓存1.Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问2.凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之 ...
- Hibernate exception
1.a different object with the same identifier value was already associated with the session. 错误原因:在h ...
- /dev下添加设备节点的方法步骤(通过device_create)
将自己开发的内核代码加入到Linux内核中,需要3个步骤: 1.确定把自己开发代码放入到内核合适的位置 将demo_chardev.c文件拷贝到.../drivers/char/目录下. demo_c ...
- 织梦DEDE后台定时分时段自动更新发布文章插件
定时审核插件使用说明 一.立信CPA培训注册会计师考试网站 以超级管理员身份登录后台,依次选择[核心]à [定时审核管理],输入定时审核的时间段,如下图所示: 功能说明: 1. 可以设置若干时间段,在 ...