题意:

  现在有一个长度为 n的升序数组 arr 和一个数 x,你需要在 arr 中插入 x

  你可以询问 x 跟 arri 的大小关系,保证所有 arri x 互不相同。这次询问的代价为 costi

  你需要返回 x 应该插入的位置,显然有 n+1 中可能的返回值。

  现在给你 cost 数组,你需要制定方案,使得对于所有可能的情况花费代价(即询问的代价的和)的最大值最小,输出这个最小值。

  制定方案的意思就是说你先询问一个 i,然后根据返回值决定接下来询问哪个 i,直到你可以确定答案为止。

分析:

  这个题好神啊……我看了ztb大爷的代码……可能我理解的也不是很准确啊……那就三个月后再战此题吧……

  首先可以看到,每个ai不超过9,所以最终的答案一定不大,最变态的上界也不过就是9logn,但是应该达不到。

  我们设两个dp数组:

    f[i][v]表示以i为当前区间的左端点,花费为v,最长能确定的区间的右端点

    g[i][v]表示以i为当前区间的右端点,花费为v,最长能确定的区间的左端点。(其实就是对称的)

  那么我们可以看到,对于一个costi,假如我们付出这样的代价,那么在暂时不考虑左端点的情况下,最长的区间的右端点一定在f[i+1][v-costi],那我们该用这个点去更新哪个状态呢???

  即为这个可行区间找一个最左端点,那么我们另一个数组就派上用场了,花费已经确定,那么我们就令:

  f[g[i][v-costi]][v]=max(f[g[i][v-costi]][v], f[i+1][v-costi]);

  或者换一种表达方式,就是在i这个点,我们花costi的花费,使总花费达到v,可以使g[i][v-costi]表示的这个点到f[i+1][v-cost]表示的这个点的区间可行(这段区间最多用v的代价就可以检索到每一个值)

  你看到我们的方程,发现i及i之前有一个花费v-costi达到的最远区间,i之后也是花费v-costi达到的最远区间,会不会两遍加起来的花费就超过了v-costi呢?

  如果你这样想,说明你的理解和这道题的题意真的是阴阳两隔(没错就是我)。

  题目里说的是根据返回的值来调整继续下去的决策,所以说,这一步操作就相当于是,假如我们询问了i,那么返回的参数如果是小于等于ai,我们就走左边那个区间来花掉剩下的v-costi,如果返回值告诉我们,我们的x大于ai,那么我们就往右查找,来花掉剩下的v-costi,根本不存在v-costi花两遍的情况,因为根本不可能既走左边又走右边!

  另一个方程同理:g[f[i+1][v-costi]][v]=min(g[f[i+1][v-costi]][v],g[i][v-costi]);

  当然,初始化就是f[i][v]=g[i][v]=i;

  但是,有些costi由于太过不优,我们决策时会直接跳过,但是它会被之前某些决策所覆盖,所以也是需要更新的,于是就多了两个for循环来保证所有答案合法且最优。

  当f[1][v]覆盖整个区间时,v就是题目的答案。

代码:

 #include<bits/stdc++.h>
using namespace std;
const int N=,M=;
int a[N],f[N][M],g[N][M],n;char s[N];
int main(){
scanf("%s",s+);n=strlen(s+);
for(int i=;i<=n;i++) a[i]=s[i]-'';
for(int v=;v<M;v++)
for(int i=;i<=n+;i++)
f[i][v]=g[i][v]=i;
for(int v=;v<M;v++){
for(int i=;i<=n;i++){
if(v<a[i]) continue;
f[g[i][v-a[i]]][v]=max(
f[g[i][v-a[i]]][v],f[i+][v-a[i]]);
g[f[i+][v-a[i]]][v]=min(
g[f[i+][v-a[i]]][v],g[i][v-a[i]]);
} for(int i=;i<=n+;i++)
f[i][v]=max(f[i][v],f[i-][v]);
for(int i=n;i;i--)
g[i][v]=min(g[i][v],g[i+][v]);
if(f[][v]==n+)
{printf("%d\n",v);return ;}
} return ;
}

dp

  

【2018 1月集训 Day1】二分的代价的更多相关文章

  1. 【2019 1月集训 Day1】回文的后缀

    题意: 给定 n,s,求有多少个字符集大小为 s ,长度为 n 的字符串,使得其不存在一个长度大于 1 的回文后缀. 答案对 m 取模. 分析: 考场见到计数题的链式反应,想写暴力—>暴力难写— ...

  2. 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1

    目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...

  3. 牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并)

    牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并) 题意:给你一颗树,要求找出简单路径上最大权值为1~n每个边权对应的最大异或和 题解: 根据异或的性质我们可以得到 \ ...

  4. 2019暑期金华集训 Day1 数据结构

    自闭集训 Day1 数据结构 CF643G 用类似于下面的方法,搬到线段树上. 如何合并两个集合?先全部放在一起,每次删掉最小的\(cnt_i\),然后把其他所有的\(cnt\)都减去\(cnt_i\ ...

  5. 国庆集训 Day1 T2 生成图 DP

    国庆集训 Day1 T2 生成图 现在要生成一张\(n\)个点的有向图.要求满足: 1.若有 a->b的边,则有 b->a 的边 2.若有 a->b 的边和 b->c 的边,则 ...

  6. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

  7. LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)

    LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...

  8. 暑假集训Day1 整数划分

    题目大意: 如何把一个正整数N(N长度<20)划分为M(M>=1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式. 输入格式: 第一行一个正整数T(T<= ...

  9. 【2018寒假集训 Day1】【位运算】翻转游戏

    翻转游戏(flip) [问题描述] 翻转游戏是在一个 4 格×4 格的长方形上进行的,在长方形的 16 个格上每 个格子都放着一个双面的物件.每个物件的两个面,一面是白色,另一面是黑色, 每个物件要么 ...

随机推荐

  1. 使用oracle的保留字作为字段名称并进行操作的方法

    项目中调取业主的数据库时发现,其中一个表的一个字段名为:update,所以当我用数据库查询语句进行查询的时候总会出错.从网上查询之后发现原来很简单,只要把update加上双引号就好了,例如: sele ...

  2. vs2008添加消息函数方法

    开发MFC时,开发工具VS2008不能像开发工具VC++6.0那样,直接在类文件上右击选择“Add Window Message Handles”来添加消息映射.对于我这个初学者,刚开始一直没找到可以 ...

  3. bzoj 3083: 遥远的国度【树链剖分】

    首先,如果没有换根操作的话,那么这就是一个普通的树链剖分. 先按照以1为根进行树链剖分,用线段树维护最小值.现在考虑换根操作,设当前根为root,查询的子树根节点为想,会发现有如下三种情况: \( r ...

  4. 解决 iphone5 4 inch 屏 app黑边问题

    你需要一张640*1138的预加载图(launch image).在工程>TARGETS 中添加,系统将自动将其重命名为Default-568h@2x.png.

  5. [POI2008]Sta

    Description 给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大 Input 给出一个数字N,代表有N个点.N<=1000000 下面N-1条边. Output ...

  6. HDU 1568 快速求斐波那契前四位

    思路: 把斐波那契通项公式转化成log的形式,高中数学... //By SiriusRen #include <bits/stdc++.h> using namespace std; ], ...

  7. 使用VS2015打包winform程序安装包简单方法(不需要InstallShield)

    转载自:   DGPLM博客 使用VS2015打包winform程序安装包简单方法(不需要InstallShield)

  8. 173 Binary Search Tree Iterator 二叉搜索树迭代器

    实现一个二叉搜索树迭代器.你将使用二叉搜索树的根节点初始化迭代器.调用 next() 将返回二叉搜索树中的下一个最小的数.注意: next() 和hasNext() 操作的时间复杂度是O(1),并使用 ...

  9. 移动web开发填坑(一)

    上周开始接触移动web开发,默默的掉进了很多坑里面.本文主要总结本周遇到的坑以及如何填坑. 1.px与rem换算. 设计稿的宽度一般是640px,而iphone是320px,所以测量设计稿的结果首先要 ...

  10. ASP.Net 控件

    简单控件 Label -作用是显示文字,编译后元素是Span 1.文本类 边框: BorderColor 边框颜色 BordersTyle 边框样式 BorderWidth 边框粗细 Literal- ...