方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0。再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x、z有关,并且M=min(x,z)(x,z分别为N!的中因子2,因子5的个数)。因为N!中每两个数字就有一个数为2的倍数,即每5个数中(最后一个数为5的倍数)至少有2个数为2的倍数,而只有最后一个数为5的倍数,所以可知因子为2的个数一定不小于因子为5的个数(x>=z),即M=z。因此,我们只需统计N!中因子为5的个数即可!时间复杂度为O(nlog5n),其中n=N/5。

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,cnt,tmp;
while(cin>>n){
cnt=;
for(int i=;i<=n;i+=){//n!内i只有为5的倍数才可产生因子5
tmp=i;
while(tmp%==)cnt++,tmp/=;//累加因子5的个数
}
cout<<cnt<<endl;
}
return ;
}

方法二:如果N是109呢,用方法一肯定会超时。此时有一条公式可以快速地求出N!尾数为0的个数:M=[N/5]+[N/52]+[N/53]+...公式的意思就是不大于N且为5的倍数的每个数各贡献一个因子5加上不大于N且为52的倍数的每个数各贡献一个因子5加上...,将所有结果累加即为N!中因子5的个数。时间复杂度为O(log5N)。举个例子:当N=25时,N!内为5的倍数的数有5,10,15,20,25,对应数字包含因子为5的个数为1,1,1,1,2,(很明显通过法一可知25!尾数有6个0)套一下法二的公式:N内为5的倍数的个数有N/5=25/5=5个,即前面5个数各贡献一个因子5,继续累加:N/52=25/25=1个,即最后一个数25也贡献一个因子5,所以25!尾数有6个0,因此验证了法二的正确性。其实这里用到了一个数论知识:若p是质数,p<=n,则N!是p的倍数,设px为p在N!内的最高次幂,则x=[N/p]+[N/p2]+[N/p3]+...,并且有[N/(p*p)]=[[N/p]/p]。结合法一可知p=5,即只需求N!内因子为5的个数!

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,cnt;
while(cin>>n){
cnt=;
while(n>4)cnt+=n/,n/=;
cout<<cnt<<endl;
}
return ;
}

求N!尾数有多少个0。的更多相关文章

  1. 题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124 Problem Description The most important part of a ...

  2. NEFU 118 n!后面有多少个0【数论】

    http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=118 求n!后面有多少个0(1<=n<=1000000000) ...

  3. 求一个n!中尾数有多少个零

    题目描述: 输入一个正整数n,求n!(即阶乘)末尾有多少个0? 比如: n = 10; n! = 3628800,所以答案为2 输入描述: 输入为一行,n(1 ≤ n ≤ 1000) 输出描述: 输出 ...

  4. NEFU 118 - n!后面有多少个0 & NEFU 119 - 组合素数 - [n!的素因子分解]

    首先给出一个性质: n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + …… 举例证明: 例如我们有10!,我们要求它的素因子分解中2的幂: ...

  5. N的阶乘末尾有多少个0

    N的阶乘(N!)中的末尾有多少个0? N的阶乘可以分解为: 2的X次方,3的Y次方,4的5次Z方,.....的成绩.由于10 = 2 * 5,所以M只能和X和Z有关,每一对2和5相乘就可以得到一个10 ...

  6. nefu 118 n!后面有多少个0 算数基本定理,素数分解

    n!后面有多少个0 Time Limit 1000ms Memory Limit 65536K description 从输入中读取一个数n,求出n! 中末尾0的个数. input 输入有若干行.第一 ...

  7. 从“n!末尾有多少个0”谈起

    在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...

  8. HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K

    HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K [Problem Description] 略 [Solution] 对于一个指数\(k\),找到一个最大的\(m\)使得\(m^ ...

  9. nefu 753 n!末尾有多少个0

    Problem : 753 Time Limit : 1000ms Memory Limit : 65536K description 计算N!末尾有多少个0 input 输入数据有多组,每组1行,每 ...

随机推荐

  1. ubuntu安装ftp环境

    ubuntu安装ftp环境 安装: apt install vsftpd 启动: service vsftpd start 查看状态: service vsftpd status root登录: vi ...

  2. FreeFileSync同步定时执行

    Schedule a Batch Job Create a new batch job via FreeFileSync's main dialog: Menu → File → Save as a ...

  3. Node.js - 断言

    什么是断言? 程序中的断言是什么意思,让我们带着疑问一步步探索 断言即我们相信程序某个特定点布尔表达式为真 举个例子就是: 我相信你是对的,然后让别人判断一下你是对的或错的,最后我得到结果. 好了,进 ...

  4. FPGA第一篇:SRAM工作原理

    一.SRAM概述 SRAM主要用于二级快速缓存(Level2 C ache). 它利用晶体管来存储数据.与DRAM相比,SRAM的速度快,但在同样面积中SRAM的容量要比其它类型的内存小. 大部分FP ...

  5. Python 点滴 I

    [为什么使用Python] 1. 软件质量:   Python更注重软件质量,一致性,可维护性 2. 开发效率:   相比C/C++/Java这些编译/静态语言,无需编译及链接步骤,Python所须要 ...

  6. MFC项目实战(1)文件管理器--界面设计篇

    1.创建项目 文件管理器是一个基于对话框的应用程序.首先新建一个“MFC应用程序”类型的项目,然后输入新建项目的名称“FileMng”,并指定该项目保存的位置,单击“确定”按钮,如图所示. 在弹出的“ ...

  7. Spring Boot Spring 自动配置

    Spring Boot 不是应用服务器: Spring Boot没有实现诸如JPA.JMS(Java Message Service)之类的Java企业级规范: Spring Boot没有引入任何形式 ...

  8. (22) java web的struts2框架的使用-struts配置文件

    1,配置文件的引用 struts中配置文件可以有多个,每个模块的包里面都可以单独设立一个struts配置文件. 主的配置文件,放在“src”文件夹下,可以引入其他配置文件,引入方式: <!-- ...

  9. Enterprise Architect 生成项目类图

    Enterprise Architect使用教程: https://blog.csdn.net/chenglc1612/article/details/81083151 主要流程 --到此-自动生成完 ...

  10. 使用C#开发HTTP服务器系列之实现Get和Post

     各位朋友大家好,我是秦元培,欢迎大家关注我的博客,我的博客地址是http://qinyuanpei.com.在我们这个Web服务器有了一个基本的门面以后,我们是时候来用它做点实际的事情了.还记得我们 ...