方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0。再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x、z有关,并且M=min(x,z)(x,z分别为N!的中因子2,因子5的个数)。因为N!中每两个数字就有一个数为2的倍数,即每5个数中(最后一个数为5的倍数)至少有2个数为2的倍数,而只有最后一个数为5的倍数,所以可知因子为2的个数一定不小于因子为5的个数(x>=z),即M=z。因此,我们只需统计N!中因子为5的个数即可!时间复杂度为O(nlog5n),其中n=N/5。

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,cnt,tmp;
while(cin>>n){
cnt=;
for(int i=;i<=n;i+=){//n!内i只有为5的倍数才可产生因子5
tmp=i;
while(tmp%==)cnt++,tmp/=;//累加因子5的个数
}
cout<<cnt<<endl;
}
return ;
}

方法二:如果N是109呢,用方法一肯定会超时。此时有一条公式可以快速地求出N!尾数为0的个数:M=[N/5]+[N/52]+[N/53]+...公式的意思就是不大于N且为5的倍数的每个数各贡献一个因子5加上不大于N且为52的倍数的每个数各贡献一个因子5加上...,将所有结果累加即为N!中因子5的个数。时间复杂度为O(log5N)。举个例子:当N=25时,N!内为5的倍数的数有5,10,15,20,25,对应数字包含因子为5的个数为1,1,1,1,2,(很明显通过法一可知25!尾数有6个0)套一下法二的公式:N内为5的倍数的个数有N/5=25/5=5个,即前面5个数各贡献一个因子5,继续累加:N/52=25/25=1个,即最后一个数25也贡献一个因子5,所以25!尾数有6个0,因此验证了法二的正确性。其实这里用到了一个数论知识:若p是质数,p<=n,则N!是p的倍数,设px为p在N!内的最高次幂,则x=[N/p]+[N/p2]+[N/p3]+...,并且有[N/(p*p)]=[[N/p]/p]。结合法一可知p=5,即只需求N!内因子为5的个数!

 #include<bits/stdc++.h>
using namespace std;
int main(){
int n,cnt;
while(cin>>n){
cnt=;
while(n>4)cnt+=n/,n/=;
cout<<cnt<<endl;
}
return ;
}

求N!尾数有多少个0。的更多相关文章

  1. 题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124 Problem Description The most important part of a ...

  2. NEFU 118 n!后面有多少个0【数论】

    http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=118 求n!后面有多少个0(1<=n<=1000000000) ...

  3. 求一个n!中尾数有多少个零

    题目描述: 输入一个正整数n,求n!(即阶乘)末尾有多少个0? 比如: n = 10; n! = 3628800,所以答案为2 输入描述: 输入为一行,n(1 ≤ n ≤ 1000) 输出描述: 输出 ...

  4. NEFU 118 - n!后面有多少个0 & NEFU 119 - 组合素数 - [n!的素因子分解]

    首先给出一个性质: n!的素因子分解中的素数p的幂为:[ n / p ] + [ n / p² ] + [ n / p³ ] + …… 举例证明: 例如我们有10!,我们要求它的素因子分解中2的幂: ...

  5. N的阶乘末尾有多少个0

    N的阶乘(N!)中的末尾有多少个0? N的阶乘可以分解为: 2的X次方,3的Y次方,4的5次Z方,.....的成绩.由于10 = 2 * 5,所以M只能和X和Z有关,每一对2和5相乘就可以得到一个10 ...

  6. nefu 118 n!后面有多少个0 算数基本定理,素数分解

    n!后面有多少个0 Time Limit 1000ms Memory Limit 65536K description 从输入中读取一个数n,求出n! 中末尾0的个数. input 输入有若干行.第一 ...

  7. 从“n!末尾有多少个0”谈起

    在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...

  8. HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K

    HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K [Problem Description] 略 [Solution] 对于一个指数\(k\),找到一个最大的\(m\)使得\(m^ ...

  9. nefu 753 n!末尾有多少个0

    Problem : 753 Time Limit : 1000ms Memory Limit : 65536K description 计算N!末尾有多少个0 input 输入数据有多组,每组1行,每 ...

随机推荐

  1. 原来,表名和字段名不能在pdo中“参数化查询”

    https://stackoverflow.com/questions/182287/can-php-pdo-statements-accept-the-table-or-column-name-as ...

  2. CentOS里route命令详解

    Route 功能简述:linux系统中的route命令能够用于IP路由表的显示和操作.它的主要作用是创建一个静态路由让指定一个主机或者一个网络通过一个网络接口,如eth0.当使用"add&q ...

  3. rand和srand的用法(转载)

    首先我们要对rand&srand有个总体的看法:srand初始化随机种子,rand产生随机数,下面将详细说明. rand(产生随机数)表头文件: #include<stdlib.h> ...

  4. Zookeeper 简单操作

    1.  连接到zookeeper服务 [java2000_wl@localhost zookeeper-3]$ bin/zkCli.sh -server 127.0.0.1:2181 也可以连接远端的 ...

  5. Python中暂未解决的问题

    编写一个复杂的计算器,可以在通过GUI输出出来.参考代码http://www.cnblogs.com/BeginMan/p/3216093.html shelve模块中open()函数调用文件文件的路 ...

  6. 解决centos yum安装"No package nginx available."问题

    问题原因: nginx位于第三方的yum源里面,而不在centos官方yum源里面 解决方法: 安装epel(Extra Packages for Enterprise Linux) a.去epel网 ...

  7. win系统下启动linux上的kafka集群及使用

    一.首先在win系统下C:\Windows\System32\drivers\etc文件夹中hosts文件加入例如以下内容: 10.61.6.167 slaves1 10.61.6.168 slave ...

  8. 远程调试 Asp.Net 项目

    项目部署到产品环境后,难免会发生一些故障,有一些可以在本地测试环境中直接重现,而有一些则无法重现.对于可以在本地测试环境中重现的Bug,开发人员往往能够很迅速地进行问题排查.而对于无法重现的Bug,就 ...

  9. CSVReader

    从网上找了一个开源的东东 ,网址 https://www.csvreader.com/

  10. OutputStream和InputStream的区别 + 实现java序列化

    我们所说的流,都是针对内存说的,比如为什么打印到屏幕上就是System.out.println();而从屏幕等待用户输入的却是System.in呢?因为对于内存来说,把字符串打印到屏幕上是从内存流向屏 ...