二值掩膜输出依据种类预测分支(Faster R-CNN部分)预测结果:当前RoI的物体种类为i
第i个二值掩膜输出就是该RoI的损失Lmask

对于预测的二值掩膜输出,我们对每个像素点应用sigmoid函数,整体损失定义为平均二值交叉损失熵。
引入预测K

个输出的机制,允许每个类都生成独立的掩膜,避免类间竞争。这样做解耦了掩膜和种类预测。不像是FCN的方法,在每个像素点上应用softmax函数,整体采用的多任务交叉熵,这样会导致类间竞争,最终导致分割效果差。

掩膜表示到RoIAlign层

在Faster R-CNN上预测物体标签或bbox偏移量是将feature map压缩到FC层最终输出vector,压缩的过程丢失了空间上(平面结构)的信息,而掩膜是对输入目标做空间上的编码,直接用卷积形式表示像素点之间的对应关系那是最好的了。

输出掩膜的操作是不需要压缩输出vector,所以可以使用FCN(Full Convolutional Network),不仅效率高,而且参数量还少。为了更好的表示出RoI输入和FCN输出的feature之间的像素对应关系,提出了RoIAlign层。

先回顾一下RoIPool层:

其核心思想是将不同大小的RoI输入到RoIPool层,RoIPool层将RoI量化成不同粒度的特征图(量化成一个一个bin),在此基础上使用池化操作提取特征。

下图是SPPNet内对RoI的操作,在Faster R-CNN中只使用了一种粒度的特征图:

平面示意图如下:

这里面存在一些问题,在上面量操作上,实际计算中是使用的是[x/16]

,16的量化的步长,[·]

是舍入操作(rounding)。这套量化舍入操作在提取特征时有着较好的鲁棒性(检测物体具有平移不变性等),但是这很不利于掩膜定位,有较大负面效果。

针对这个问题,提出了RoIAlign层:避免了对RoI边界或bin的量化操作,在扩展feature map时使用双线性插值算法。这里实现的架构要看FPN论文:

一开始的Faster R-CNN是基于最上层的特征映射做分割和预测的,这会丢失高分辨下的信息,直观的影响就是丢失小目标检测,对细节部分丢失不敏感。受到SSD的启发,FPN也使用了多层特征做预测。这里使用的top-down的架构,是将高层的特征反卷积带到低层的特征(即有了语义,也有精度),而在MRCNN论文里面说的双线性差值算法就是这里的top-down反卷积是用的插值算法。

总结

MRCNN有着优异的效果,除去了掩膜分支的作用,很大程度上是因为基础特征网络的增强,论文使用的是ResNeXt101+FPN的top-down组合,有着极强的特征学习能力,并且在实验中夹杂这多种工程调优技巧。

但是吧,MRCNN的缺点也很明显,需要大的计算能力并且速度慢,这离实际应用还是有很长的路,坐等大神们发力!

TF实战:(Mask R-CNN原理介绍与代码实现)-Chapter-8的更多相关文章

  1. 加密原理介绍,代码实现DES、AES、RSA、Base64、MD5

    阅读目录 github下载地址 一.DES对称加密 二.AES对称加密 三.RSA非对称加密 四.实际使用 五.关于Padding 关于电脑终端Openssl加密解密命令 关于网络安全的数据加密部分, ...

  2. When I see you again(加密原理介绍,代码实现DES、AES、RSA、Base64、MD5)

    关于网络安全的数据加密部分,本来打算总结一篇博客搞定,没想到东西太多,这已是第三篇了,而且这篇写了多次,熬了多次夜,真是again and again.起个名字:数据加密三部曲,前两部链接如下: 整体 ...

  3. GAN网络原理介绍和代码

    GAN网络的整体公式: 公式各参数介绍如下: X是真实地图片,而对应的标签是1. G(Z)是通过给定的噪声Z,生成图片(实际上是通过给定的Z生成一个tensor),对应的标签是0. D是一个二分类网络 ...

  4. 大数据开发实战:MapReduce内部原理实践

    下面结合具体的例子详述MapReduce的工作原理和过程. 以统计一个大文件中各个单词的出现次数为例来讲述,假设本文用到输入文件有以下两个: 文件1: big data offline data on ...

  5. 04 MapReduce原理介绍

    大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由googl ...

  6. 液晶常用接口“LVDS、TTL、RSDS、TMDS”技术原理介绍

    液晶常用接口“LVDS.TTL.RSDS.TMDS”技术原理介绍 1:Lvds Low-Voltage Differential Signaling 低压差分信号 1994年由美国国家半导体公司提出之 ...

  7. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  8. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  9. B树,B+树,B*树以及R树的介绍

    https://blog.csdn.net/peterchan88/article/details/52248714 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开 ...

随机推荐

  1. react 执行 yarn build 页面无法显示

    资源文件路径问题 如果你使用create-react-app创建项目,执行命令 yarn build 后,直接以静态方式打开build文件夹内的index.html,会看到页面显示出现问题,打开con ...

  2. 使用shell分页读取600万+的MySQL数据脚本

    shell-mysql 脚本背景 因为要在Linux上.远程读取mysql的表的数据,然后做一定清洗后.把数据上传至Hadoop集群中,使用Java写吧,感觉太麻烦了.得在Win上开发好,还得打成ja ...

  3. shell脚本 加密备份MySQL数据库

    1.加密备份为.bak文件(实际只是个.zip文件) #!/bin/bash # $:IP地址 # $:用户名 # $:数据库密码 # $:数据库名 # $:加密密码 # $:备份文件名 mysqld ...

  4. Jenkins performance插件生成性能测试报告【待完成】

    https://segmentfault.com/a/1190000018651092 本地window运行 命令执行:F:\study\apache-jmeter-4.0\apache-jmeter ...

  5. Maven手工安装jar包到本地仓库

    使用maven,少不了的就是要被"包下载失败"这种问题折腾. jar包下载失败后.我们选择手工把jar下载下来.(能够下载到指定jar的途经非常多) 以下随便找了一个jar包为例. ...

  6. 使用逆向工程生成mybatis的Mapper文件

    之前有写过一篇博客: 使用MyBatis Generator自动生成MyBatis的代码链接:http://www.cnblogs.com/klslb/p/6908535.html 这个太麻烦了,而且 ...

  7. ubuntu将mysql、nginx添加到环境变量中

    vim /etc/profile 添加 export PATH="$PATH:/usr/local/mysql/bin" export PATH="$PATH:/usr/ ...

  8. Ural 1158. Censored! 有限状态自动机+DP+大整数

    Ural1158 看上去很困难的一道题. 原文地址 http://blog.csdn.net/prolightsfxjh/article/details/54729646 题意:给出n个不同的字符,用 ...

  9. 2008提权之突破系统权限安装shift后门

    大家都知道08权限的系统权限设置很严格,且在2003系统中常用到的溢出工具都失效.面对限制IP连接的情况 我们及时拿到system权限 有账号也上不去 这种情况下只能弄shift后门 或者放大镜了.但 ...

  10. JAVA接口和抽象类的特点

    接口的特点: 1:接口不可实例化,可结合多态进行使用(接口 对象=new 对象()) 2:接口里的成员属性全部是以 public(公开).static(静态).final(最终) 修饰符修饰 3:接口 ...