BZOJ 2506 分块
//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int N=;
int a[N],n,m,f[][],g[N],tmp=;
struct Node{int l,r,p,k,ans,id;}ask[N];
bool cmp(Node a,Node b){return a.l<b.l;}
bool cmp2(Node a,Node b){return a.id<b.id;}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)
scanf("%d%d%d%d",&ask[i].l,&ask[i].r,&ask[i].p,&ask[i].k),ask[i].id=i,ask[i].r++;
sort(ask+,ask++m,cmp);
for(int i=;i<=m;i++){
while(tmp<ask[i].l){
for(int i=;i<=;i++)f[i][a[tmp]%i]++;
g[a[tmp]]++;
tmp++;
}
if(ask[i].p<=)ask[i].ans-=f[ask[i].p][ask[i].k];
else{
for(int i=;i*ask[i].p+ask[i].k<=;i++)ask[i].ans-=g[i*ask[i].p+ask[i].k];
}
}tmp=;
memset(f,,sizeof(f)),memset(g,,sizeof(g));
for(int i=;i<=m;i++){
while(tmp<ask[i].r){
for(int i=;i<=;i++)f[i][a[tmp]%i]++;
g[a[tmp]]++;
tmp++;
}
if(ask[i].p<=)ask[i].ans+=f[ask[i].p][ask[i].k];
else{
for(int i=;i*ask[i].p+ask[i].k<=;i++)ask[i].ans+=g[i*ask[i].p+ask[i].k];
}
}
sort(ask+,ask++m,cmp2);
for(int i=;i<=m;i++)printf("%d\n",ask[i].ans);
}
BZOJ 2506 分块的更多相关文章
- bzoj 2821 分块处理
大题思路就是分块,将n个数分成sqrt(n)个块,然后 处理出一个w数组,w[i,j]代表第i个块到第j个块的答案 那么对于每组询问l,r如果l,r在同一个块中,直接暴力做就行了 如果不在同一个块中, ...
- bzoj 2741 分块+可持久化trie
多个询问l,r,求所有子区间异或和中最大是多少 强制在线 做法: 分块+可持久化trie 1.对于每块的左端点i,预处理出i到任意一个j,()i,j)间所有子区间异或和中最大为多少,复杂度O(\(n\ ...
- bzoj 2821 分块
分块: 先预处理,将原序列分成长度为len的许多块,计算从第i块到第j块的答案,(可以做到O(n*n/len)). 每次询问时,将询问的区间分成三部分,:左边,中间,右边,中间是尽量大的一个块区间,其 ...
- BZOJ - 2741 分块维护最大连续异或和
题意:给定\(a[l...r]\),多次询问区间\([l,r]\)中的最大连续异或和\(a_i⊕a_{i+1}⊕...⊕a_{j},l≤i≤j≤r\) 一眼过去认为是不可做的,但题目给出\(n=1.2 ...
- BZOJ - 2957 (分块/线段树)
题目链接 本质是维护斜率递增序列. 用分块的方法就是把序列分成sqrt(n)块,每个块分别用一个vector维护递增序列.查询的时候遍历所有的块,同时维护当前最大斜率,二分找到每个块中比当前最大斜率大 ...
- BZOJ - 1257 分块 详解
中文题面 这道题就是LightOJ某题的升级版 前段时间我是直接用√k前暴力后分块的处理方式,然后直接套个等差求和 这次看到了dalao的证明再次让我知道我好菜啊 在这里做下笔记,学习一下对于整除运算 ...
- BZOJ 4867 分块+神tm卡常
思路: 注意到len<=10 按照权值max-min<=sqrt(n)*len 分块 记一下前缀和 每修改sqrt(n)次以后重新分块 修改的时候整块打标记 两边重构 (这题常数卡 ...
- BZOJ 4491 分块OR差分+线段树
思路: (是不是只有我作大死写了个分块) up[i][j]表示从第i块开始到第j个位置 上升的最大值 down[i][j]同理 left_up[i]表示从第i块开始能够上升的最长长度 left_dow ...
- BZOJ 3509 分块FFT
思路: 跟今年WC的题几乎一样 (但是这道题有重 不能用bitset水过去) 正解:分块FFT http://blog.csdn.net/geotcbrl/article/details/506364 ...
随机推荐
- Linux文件/目录,权限相关
查看权限 命令 # ls -l filename 结果 -rw-r--r-- l root root 27 11-10 14:50 filename 解析: -rw-r--r-- --共10位 第1位 ...
- Python基础之函数参数与返回值进阶
参数作用:如果外界希望在函数内部处理数据,就可以将数据作为参数传入函数内部: 返回值作用:如果希望一个函数函数执行完成后,向外界报告函数的执行结果,就可以使用函数的返回值. 函数的返回值 进阶 利用元 ...
- average column data from multiple files
example in file a, data is [1 , 2, 3; 4,5,6] file b, data is [4,5, 6; 7,8,9] average=0.5 (a+b) matl ...
- stm32实现iap远程固件更新
前提 想来做iap升级了,应该不是什么新手. 下面的程序需要用到一些简单的功能 串口收发数据开关总中断虽然本文标题是实现远程固件更新,但是具体远程方案本文不做详细说明,重点在于介绍mcu接收到新的固件 ...
- 【codeforces 709D】Recover the String
[题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...
- HDU 1114 完全背包问题的转化
题目大意: 根据存钱罐中钱的重量,和每一种钱对应的重量和价值,判断钱能否塞满这个重量,如果能,输出得到的最小价值 这个问题就是要把它和背包问题连接起来,这里钱取得数目是无穷的,所以这里只需要用到完全背 ...
- [bzoj3668][Noi2014]起床困难综合症_暴力
起床困难综合征 bzoj-3668 Noi-2014 题目大意:题目链接. 注释:略. 想法:Noi考这题...联赛T1难度.... 我们将每个门上的数二进制拆分. 发现:当前位的操作可能直接确定了当 ...
- java中普通的顶级类是不能使用static关键字修饰的。只有内部类可以使用static修饰,也可以不使用staitc关键字修饰。
java中普通的顶级类是不能使用static关键字修饰的.只有内部类可以使用static修饰,也可以不使用staitc关键字修饰. java中的类可以是static吗?答案是可以.在java中我们可以 ...
- androidannotations的background和UiThread配合使用參考
简单介绍 androidannotations在开发中的代码规范思考:(MVC思考)时间太紧,先贴代码: Activity的代码: package edu.njupt.zhb.main; import ...
- C#之反射(PropertyInfo类)
1.引入命名空间:System.Reflection:程序集:mscorlib(在mscorlib.dll中) 2.示例代码(主要是getType().setValue().getValue()方法) ...