传送门

高斯消元解异或方程组

小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi。

小Ho:小Hi,这次又该怎么办呢?

小Hi:让我们来分析一下吧。

首先对于每一个格子的状态,可能会对它造成影响的是其自身和周围4个格子,这五个格子被按下的总次数也就等于该格子所改变的总次数。

对于任意一个格子,如果这个格子改变了偶数次状态,则等价于没有发生改变。

我们可以将1看作格子亮着,0看作格子暗着,每改变1次就加1,最后格子的状态等于其总数值 MOD 2。

则其运算结果刚好满足异或运算,即每改变一次等于状态值 xor 1。

同样的对于一个格子和它周围的4个格子来说,若格子被按下偶数次,它自身和周围4个格子的状态也等于没有发生改变。所以我们可以知道:任意一个格子至多被按下一次。

假设有数组x[1..30],分别表示这30个格子是否按下1次,若按下则x[i]=1,否则x[i]=0。

则对于1个格子,他最后的状态为:

当前状态 = 初始状态 xor (a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30])

其中a[i]表示格子i是否会对当前格子产生影响,若能够则a[i] = 1,否则a[i] = 0

对方程进行变换有:

(a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30]) = 当前状态 xor 初始状态

因为我们的目标是要让所有等格子都为亮的状态,故我们需要让 当前状态 = 1,则:

(a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30]) = 1 xor 初始状态

不妨设y = 1 xor 初始状态:

(a[1] * x[1]) xor (a[2] * x[2]) xor ... xor (a[30] * x[30]) = y

对于所有的格子,我们可以连立出方程组:

(a[ 1][1] * x[1]) xor (a[ 1][2] * x[2]) xor ... xor (a[ 1][30] * x[30]) = y[ 1]
(a[ 2][1] * x[1]) xor (a[ 2][2] * x[2]) xor ... xor (a[ 2][30] * x[30]) = y[ 2]
...
(a[30][1] * x[1]) xor (a[30][2] * x[2]) xor ... xor (a[30][30] * x[30]) = y[30]

到此,我们的目标就是求出一个x[1..30],使得上面的方程组成立。

小Ho:这个看上去和高斯消元很像啊。

小Hi:没错,这个方程组叫异或方程组,它可以用和高斯消元同样的方法来解决。

其解答过程几乎和高斯消元无异,判定无解和多解的方式也相同。唯一需要注意的是消元过程不再是高斯消元的加减,而是通过xor运算来进行消元。比如消除第j行第i列的1:

a[j][k] = a[j][k] xor a[i][k], y[j] = y[j] xor y[i]

其原理是:

    (a[j][1] * x[1]) xor (a[j][2] * x[2]) xor ... xor (a[j][30] * x[30]) xor (a[i][1] * x[1]) xor (a[i][2] * x[2]) xor ... xor (a[ i][30] * x[30]) = y[j] xor y[i]
<=> ((a[j][1] * x[1]) xor (a[i][1] * x[1])) xor (((a[j][2] * x[2]) xor (a[i][2] * x[2]))) xor ... xor ((a[j][30] * x[30]) xor (a[i][30] * x[30])) = y[j] xor y[i]<=> ((a[j][1] xor a[i][1]) * x[1]) xor ((a[j][2] xor a[i][2]) * x[2]) xor ... ((a[j][30] xor a[i][30]) * x[30]) = y[j] xor y[i]

而且由于给定游戏板是固定的,我们可以知道a[i][j]矩阵一定是固定的,而且通过计算可以知道我们消元得到的上三角矩阵也是固定的,并且在这一次的问题中该上三角矩阵是满秩的,所以其一定存在唯一解。

所以我们一定有办法完成这个游戏。

小Ho:我明白了,我这就去写程序,这奖品我拿定了!

#include <cmath>
#include <cstdio>
#include <iostream>
#define N 35
#define D(x, y) (((x) - 1) * 6 + (y)) using namespace std; int ans;
int a[N][N];
char s[N][N]; inline void Guass()
{
int i, j, k, t;
for(j = 1; j <= 30; j++)
{
t = j;
for(i = j; i <= 30; i++)
if(a[i][j] > a[t][j])
t = i;
if(t != j) swap(a[t], a[j]);
for(i = j + 1; i <= 30; i++)
if(a[i][j])
for(k = j; k <= 31; k++)
a[i][k] ^= a[j][k];
}
for(i = 30; i >= 1; i--)
{
for(j = i + 1; j <= 30; j++)
a[i][31] ^= (a[i][j] * a[j][31]);
if(a[i][31]) ans++;
}
} int main()
{
int i, j;
for(i = 1; i <= 5; i++)
{
scanf("%s", s[i] + 1);
for(j = 1; j <= 6; j++)
{
a[D(i, j)][D(i, j)] = 1;
a[D(i, j)][31] = 1 ^ (s[i][j] - '0');
if(1 < i && i <= 5) a[D(i - 1, j)][D(i, j)] = a[D(i, j)][D(i - 1, j)] = 1;
if(1 <= i && i < 5) a[D(i + 1, j)][D(i, j)] = a[D(i, j)][D(i + 1, j)] = 1;
if(1 < j && j <= 6) a[D(i, j - 1)][D(i, j)] = a[D(i, j)][D(i, j - 1)] = 1;
if(1 <= j && j < 6) a[D(i, j + 1)][D(i, j)] = a[D(i, j)][D(i, j + 1)] = 1;
}
}
Guass();
printf("%d\n", ans);
for(i = 1; i <= 5; i++)
for(j = 1; j <= 6; j++)
if(a[D(i, j)][31])
printf("%d %d\n", i, j);
return 0;
}

  

hihoCoder#1196 : 高斯消元·二(开关灯问题)的更多相关文章

  1. hihocoder 1196 高斯消元.二

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其他的活动. 店主:买了 ...

  2. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  3. hiho #1196 : 高斯消元·二

    #1196 : 高斯消元·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回中,小Hi和小Ho趁着便利店打折,买了一大堆零食.当他们结账后,看到便利店门口还有其 ...

  4. hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】

    题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...

  5. HihoCoder 1195 高斯消元·一(高斯消元)

    题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...

  6. hihoCoder 1195 高斯消元.一

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:喂不得了啦,那边便利店的薯片半价了! 小Hi:啥?! 小Ho:那边的便利店在打折促销啊. 小Hi:走走走, ...

  7. hihoCoder #1195 高斯消元·一

    题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...

  8. [HIHO1196]高斯消元·二(高斯消元、枚举自由变元)

    题目链接:http://hihocoder.com/problemset/problem/1196 #include <bits/stdc++.h> using namespace std ...

  9. [hihoCoder] 高斯消元·一 [TPLY]

    高斯消元一 题目链接 : http://hihocoder.com/problemset/problem/1195?sid=1269842 很"好aoaoaoaoaoaoa"的高斯 ...

随机推荐

  1. Struts2 前端与后台之间传值问题

    老是被前端与后台之间的传值给弄糊涂了,特此写一篇blog进行总结. 一. 前端向后台传值 (1)属性驱动 属性驱动是指在Action类里,包含表单里对应的字段(字段名称一样),同时设置对应的gette ...

  2. SQL Server数据库的除法默认向下取整,要返回小数的解决方法

    num1; / 1000.0 num2; * 1.0 num3; num4; 结果:

  3. PHP01 LAMP网站构建

    学习要点 什么是web? 开发动态网站所需的web构件? 几种主流web应用程序平台? HTTP协议与web的关系? Web的工作原理? LAMP网站开发组合概述? 如何学习PHP? 什么是Web? ...

  4. mongodb windows 开机启动

    1)新建存放db E:\mongodb\data\db 2)新建日志文件 E:\mongodb\logs\log.txt 3)管理员运行Cmd 4)CD mongodb安装路径 5)运行命令 mong ...

  5. 硬盘写入 iso

    https://www.jb51.net/softjc/508796.html WinImage 正确操作是要有两个or以上-硬盘. 这样才能写入你要装的操作系统 测试或者安装

  6. Visual C++中error spawning cl.exe错误的两种解决方法.

    可能很多人在安装VC 6.0后有过点击“Compile”或者“Build”后被出现的 “Compiling... ,Error spawning cl.exe”错误提示给郁闷过.很多人的 选择是重装, ...

  7. IO之Object流举例

    import java.io.*; public class TestObjectIO { public static void main(String args[]) throws Exceptio ...

  8. 【java面试宝典】一年工作经验者适用

    时光转瞬即逝,一年时间已经过去,自己准备跳槽了,请了几天假,面试了几家公司之后,拿到了一份offer,有了一点儿小小的心得,记录下来分享给搞Java的朋友,面试主要是几个部分内容. 很多公司会要求笔试 ...

  9. 深入理解JavaScript的设计模式

    使用适当的设计模式可以帮助你编写更好.更易于理解的代码.这样的代码也更容易维护.但是,重要的是不要过度使用它们.在使用设计模式之前,你应该仔细考虑你的问题是否符合设计模式. 当你开始一个新的项目时,你 ...

  10. Linux 配置yum本地安装源

    cat /etc/system-release Red Hat Enterprise Linux Server release 7.0 (Maipo) 1 使用本地源得先挂载ISO光盘文件 # 可以创 ...