Objects

R has five basic or “atomic” classes of objects:

character

numeric (real numbers)

integer

complex

logical (True/False)

The most basic object is a vector

A vector can only contain objects of the same class

BUT: The one exception is a list, which is represented as a vector but can contain objects of

different classes (indeed, that’s usually why we use them)

Empty vectors can be created with the vector() function.

Numbers

Numbers in R a generally treated as numeric objects (i.e. double precision real numbers)

If you explicitly want an integer, you need to specify the L suffix

Ex: Entering 1 gives you a numeric object; entering 1L explicitly gives you an integer.

There is also a special number Inf which represents infinity; e.g. 1 / 0; Inf can be used in

ordinary calculations; e.g. 1 / Inf is 0

The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN can also be

thought of as a missing value (more on that later)

Attributes

R objects can have attributes

names, dimnames

dimensions (e.g. matrices, arrays)

class

length

other user-defined attributes/metadata

Attributes of an object can be accessed using the attributes() function.

Creating Vectors

The c() function can be used to create vectors of objects.

Using the vector() function

> x <- vector("numeric", length = 10)

> x

[1] 0 0 0 0 0 0 0 0 0 0

Mixing Objects Mixing Objects

> y <- c(1.7, "a") ## character

> y <- c(TRUE, 2) ## numeric

> y <- c("a", TRUE) ## character

When different objects are mixed in a vector, coercion occurs so that every element in the vector is

of the same class.

Explicit Coercion

Objects can be explicitly coerced from one class to another using the as.* functions, if available.

> x <- 0:6

> class(x)

[1] "integer"

> as.numeric(x)

[1] 0 1 2 3 4 5 6

> as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

Nonsensical coercion results in NAs.

> x <- c("a", "b", "c")

> as.numeric(x)

[1] NA NA NA

Warning message:

NAs introduced by coercion

> as.logical(x)

[1] NA NA NA

> as.complex(x)

[1] 0+0i 1+0i 2+0i 3+0i 4+0i 5+0i 6+0i

Lists

Lists are a special type of vector that can contain elements of different classes. Lists are a very

important data type in R and you should get to know them well.

> x <- list(1, "a", TRUE, 1 + 4i)

> x

[[1]]

[1] 1

[[2]]

[1] "a"

[[3]]

[1] TRUE

[[4]]

[1] 1+4i

Matrices Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of length 2 (nrow, ncol)

> m <- matrix(nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

> dim(m)

[1] 2 3

> attributes(m)

$dim

[1] 2 3

Matrices (cont’d)

Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Matrices can also be created directly from vectors by adding a dimension attribute.

> m <- 1:10

> m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

cbind-ing and rbind-ing cbind-ing and rbind-ing

Matrices can be created by column-binding or row-binding with cbind() and rbind().

> x <- 1:3

> y <- 10:12

> cbind(x, y)

x y

[1,] 1 10

[2,] 2 11

[3,] 3 12

> rbind(x, y)

[,1] [,2] [,3]

x 1 2 3

y 10 11 12

Factors

Factors are used to represent categorical data. Factors can be unordered or ordered. One can think

of a factor as an integer vector where each integer has a label.

Factors are treated specially by modelling functions like lm() and glm()

Using factors with labels is better than using integers because factors are self-describing; having

a variable that has values “Male” and “Female” is better than a variable that has values 1 and 2.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

no yes

2 3

> unclass(x)

[1] 2 2 1 2 1

attr(,"levels")

[1] "no" "yes"

The order of the levels can be set using the levels argument to factor(). This can be important

in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"),

levels = c("yes", "no"))

> x

[1] yes yes no yes no

Levels: yes no

Missing Values Missing Values

Missing values are denoted by NA or NaN for undefined mathematical operations.

is.na() is used to test objects if they are NA

is.nan() is used to test for NaN

NA values have a class also, so there are integer NA, character NA, etc.

A NaN value is also NA but the converse is not true

> x <- c(1, 2, NA, 10, 3)

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE

> x <- c(1, 2, NaN, NA, 4)

> is.na(x)

[1] FALSE FALSE TRUE TRUE FALSE

> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

Data Frames

Data frames are used to store tabular data

They are represented as a special type of list where every element of the list has to have the

same length

Each element of the list can be thought of as a column and the length of each element of the list

is the number of rows

Unlike matrices, data frames can store different classes of objects in each column (just like lists);

matrices must have every element be the same class

Data frames also have a special attribute called row.names

Data frames are usually created by calling read.table() or read.csv()

Can be converted to a matrix by calling data.matrix()

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

> x

foo bar

1 1 TRUE

2 2 TRUE

3 3 FALSE

4 4 FALSE

> nrow(x)

[1] 4

> ncol(x)

[1] 2

Names

R objects can also have names, which is very useful for writing readable code and self-describing

objects.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("foo", "bar", "norf")

> x

foo bar norf

1 2 3

> names(x)

[1] "foo" "bar" "norf"

Summary

Data Types

atomic classes: numeric, logical, character, integer, complex \

vectors, lists

factors

missing values

data frames

names

R Programming week1-Data Type的更多相关文章

  1. R Programming week1-Reading Data

    Reading Data There are a few principal functions reading data into R. read.table, read.csv, for read ...

  2. Coursera系列-R Programming第二周

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html  --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...

  3. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  4. salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解

    建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schema Builder查看表结构以及多表之间的关联关系,可以登录后点击setup在左侧搜索框输入schema ...

  5. include pointers as a primitive data type

    Computer Science An Overview _J. Glenn Brookshear _11th Edition Many modern programming languages in ...

  6. 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)

    Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...

  7. 【转载】salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解

    salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解   建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schem ...

  8. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  9. JAVA 1.2(原生数据类型 Primitive Data Type)

    1. Java的数据类型分为2类 >> 原生数据类型(primitive data type) >> 引用数据类型(reference data type) 3. 常量和变量 ...

随机推荐

  1. /etc/profile与/etc/bashrc、交互式与非交互式、login与non-login shell的差别

    线上的memcached又挂了.仍然没有得到core文件. 排查原因,同事发现启动memcached的脚本存在可疑问题. 问题一:没有设置memcached工作文件夹,有可能core dump时没有工 ...

  2. Codeforces Round #310 (Div. 1) C. Case of Chocolate (线段树)

    题目地址:传送门 这题尽管是DIV1的C. . 可是挺简单的. .仅仅要用线段树分别维护一下横着和竖着的值就能够了,先离散化再维护. 每次查找最大的最小值<=tmp的点,能够直接在线段树里搜,也 ...

  3. UC技术博客开放通知

    国内知名浏览器UC开放技术博客( http://tech.uc.cn/),技术博客所涵盖技术点有: Hadoop Linux MySQL 前端与client技术 图像处理 开发语言和框架 数据存储 数 ...

  4. mac上为nginx打开防火墙

    1 nginx的路径必须是物理路径,不能是链接 2 执行下面的两个命令后重启电脑 命令 sudo /usr/libexec/ApplicationFirewall/socketfilterfw --a ...

  5. 检查 统计 异常 通信 time_wait

    [root@hadoop1 conf]# netstat -n | grep -v 127.0.0.1 | grep -v :3306  | grep TIME_WAIT | sort -k 5n | ...

  6. 单点登录原理及实现sso

    WEB的登录那些事 说道账户登录和注册,其实我们每天都在亲身感受着,像微博.知乎还有简书等等.我们总是需要定期的去重新登录一下,对于这种认证机制,我们都能说出来两个名词,Cookie.Session. ...

  7. 网络驱动移植之简述CS8900A网络芯片的基本原理

    CS8900A数据手册:http://www.cirrus.com/cn/products/cs8900a.html 1.概述 CS8900A是CIRRUS LOGIC公司生产的低功耗.性能优越的16 ...

  8. RDA GUI

    创建服务:“sysapp_table.h” / "dvb_guiobj_table.h" / "atv_guiobj_table.h" “服务”与“回调”   ...

  9. bzoj 1898

    1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1197  Solved: 661[Submit][S ...

  10. 微型ORM:PetaPoco 学习资料整理

    github地址:https://github.com/CollaboratingPlatypus/PetaPoco petapoco 实体中字段去掉关联(类似于EF中的NotMap) 微型ORM:P ...