几个有关整数的证明(from信息安全数学基础的作业)
1.
设m,n为正整数,m为奇数,求证2m-1和2n+1互素
反证法:假设d=(2m-1,2n+1)≥2,则存在x,y∈z,2m=dx+1,和2n=dy-1
则存在u,v∈z,2mn=du+1,2nm=dv-1(注意m为奇数) 于是d(u-v)=2,矛盾,得证
2.
m为正整数,证明若2m+1为素数,则m为2的整数次幂
利用n为奇数时,x+y|x^n+y^n(可以由归纳法证明),设m≥2,含有素因子p
则2^(m/p)+1|2^(m/p)*p +1^p 与题设矛盾
3.
a,b,c为整数,证明[(a,b),(a,c)]=(a,[b,c])
(利用算数基本定理)
引理1:
max{min(x,y),min(x,z)}=min{x,max(y,z)}
证明:
∵min(x,y)<=x, min(x,z)<=x ∴ max{。。。}<=x
类似的可以证明max{。。。}<=max{y,z}
∴ max{。。。}<=min{。。。}
min{x,max(y,z)}<=x ,<=max(y,z)
∴min{x,max(y,z)}<=min(x,y)(y>=z)
min{x,max(y,z)}<=min(x,z)(z>=y)
∴ min{x,max(y,z)}<=max{min(x,y),min(x,z)}
由上,引理得证。
之后利用gcd求解
几个有关整数的证明(from信息安全数学基础的作业)的更多相关文章
- codevs 2728 整数帝国问题(水题日常)
时间限制: 1 s 空间限制: 16000 KB 题目等级 : 白银 Silver 题目描述 Description 在很久以前,在遥远的东方,有一个整数帝国,它里面里居住着大量的正整数,了缓解都 ...
- Zookeeper(一)从抽屉算法到Quorum (NRW)算法
一.抽屉算法 抽屉算法,又名鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则.它是组合数学中一个重要的原理. 具体算法讲的是: 第一抽屉算法: 如果 ...
- catalan---卡特兰数(小结)
(关于卡特兰数的详细介绍)http://baike.baidu.com/view/2499752.htm 下面有练习的题目: 经过测试,_int64/long long 最大只能表示到33位,超过这个 ...
- 庭审全程文字实录 z
备受关注的深圳快播公司涉黄案两日来在北京市海淀法院开庭审理,快播CEO王欣(微博).事业部总经理吴铭.事业部副总经理张克东.事业部副总经理兼市场部总监牛文举出庭接受审理. 面对传播淫秽物品牟利罪的指控 ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- NOIP2018普及组模拟赛
向老师给的模拟赛,还没普及组难... 题目在洛谷团队里. 第一试三道水题,我46分钟就打完了,然后就AK了. 第二试一看,除了第二题要思考一段时间之外,还是比较水的,但是我得了Rank倒1,115分. ...
- java经典40+分析
现在是3月份,也是每年开年企业公司招聘的高峰期,同时有许多的朋友也出来找工作.现在的招聘他们有时会给你出一套面试题或者智力测试题,也有的直接让你上机操作,写一段程序.算法的计算不乏出现,基于这个原 ...
- 数论基础算法总结(python版)
/* Author: wsnpyo Update Date: 2014-11-16 Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/E ...
- uva1614 Hell on the Markets
贪心部分的理论依据:前i个数可以凑出1-sum[i]的所有整数. 证明:第二类数学归纳,n=1时成立,假设n=k之前所有项都成立,当n=k+1时.sum[k+1]=sum[k]+a[k+1].只需证明 ...
随机推荐
- Struts2声明式异常处理
通过配置.xml文件的方式处理异常信息: 注意:配置.xml文件的同时还要抛出异常 标签:<exception-mapping></exception-mapping>和< ...
- bzoj 1657 Mooo 奶牛的歌声 —— 单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1657 单调栈水题. 代码如下: #include<iostream> #incl ...
- 使用GAC加速 解决CSP问题 Kakuro - Cross Sums
Kakuro - Cross Sums 问题如下 一个简单的例子 可以看出限制条件是某行或某列的某几个空白格子求和等于某个值,且每一个限制中的格子所填的数必须为1-9且互异. 直接暴力搜索,空白格子太 ...
- OrChard快速开发一个网站,个人网站
Orchard中文 登录 主页 文档 下载 博客文章 论坛 联系我们 Orchard是一个以微软为主导的开源CMS项目,它允许使用者在Asp.Net平台上快速建立网站,并且提供扩展框架能够允许定制人员 ...
- Oracle的db.properties文件
转自:https://blog.csdn.net/lssqk/article/details/79133829
- Python 函数的参数传递
C/C++中,传递参数的类型是可以指定的.一般来说,传递参数可以分为两种:值传递和引用传递.对于值传递,参数传递的过程中进行了复制操作,也就是说,在函数中对参数的任何改动都不会影响到传入的变量:对于引 ...
- WebService之第一天
1. 定义:webService是一个远程调用技术 远程:相对于本地,不是当前应用服务的.调用:数据交互. 1.1. 业务需求的问题 1.自己想要,但没有
- hexo博客实现多终端共享&webhook自动化部署
摘要:好不容易搭建了hexo,还不满足.想要实现在小程序上也能访问博客,又不想再写一个后台.每次更新文章到服务器之后,希望能自动同步到网站上面.如果你有这样的需求,那么希望这篇文章能帮助到你. 我的配 ...
- J20170403-gg
うっすら 微微的,薄薄的 グラデーション 渐变 ぼかし(暈し) 晕色 由浓到淡渐变上色的东西 シャドウ 影子,阴影 ドメイン 域名 サブドメイン 子域名
- bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】
参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换 ...