1.

设m,n为正整数,m为奇数,求证2m-1和2n+1互素

反证法:假设d=(2m-1,2n+1)≥2,则存在x,y∈z,2m=dx+1,和2n=dy-1

则存在u,v∈z,2mn=du+1,2nm=dv-1(注意m为奇数) 于是d(u-v)=2,矛盾,得证

2.

m为正整数,证明若2m+1为素数,则m为2的整数次幂

利用n为奇数时,x+y|x^n+y^n(可以由归纳法证明),设m≥2,含有素因子p

则2^(m/p)+1|2^(m/p)*p  +1^p   与题设矛盾

3.

a,b,c为整数,证明[(a,b),(a,c)]=(a,[b,c])

(利用算数基本定理)

引理1:

max{min(x,y),min(x,z)}=min{x,max(y,z)}

证明:

∵min(x,y)<=x,  min(x,z)<=x   ∴  max{。。。}<=x

类似的可以证明max{。。。}<=max{y,z}

∴ max{。。。}<=min{。。。}

min{x,max(y,z)}<=x ,<=max(y,z)

∴min{x,max(y,z)}<=min(x,y)(y>=z)

min{x,max(y,z)}<=min(x,z)(z>=y)

∴ min{x,max(y,z)}<=max{min(x,y),min(x,z)}

由上,引理得证。

之后利用gcd求解

几个有关整数的证明(from信息安全数学基础的作业)的更多相关文章

  1. codevs 2728 整数帝国问题(水题日常)

    时间限制: 1 s  空间限制: 16000 KB  题目等级 : 白银 Silver 题目描述 Description 在很久以前,在遥远的东方,有一个整数帝国,它里面里居住着大量的正整数,了缓解都 ...

  2. Zookeeper(一)从抽屉算法到Quorum (NRW)算法

    一.抽屉算法 抽屉算法,又名鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则.它是组合数学中一个重要的原理. 具体算法讲的是: 第一抽屉算法: 如果 ...

  3. catalan---卡特兰数(小结)

    (关于卡特兰数的详细介绍)http://baike.baidu.com/view/2499752.htm 下面有练习的题目: 经过测试,_int64/long long 最大只能表示到33位,超过这个 ...

  4. 庭审全程文字实录 z

    备受关注的深圳快播公司涉黄案两日来在北京市海淀法院开庭审理,快播CEO王欣(微博).事业部总经理吴铭.事业部副总经理张克东.事业部副总经理兼市场部总监牛文举出庭接受审理. 面对传播淫秽物品牟利罪的指控 ...

  5. Miller_Rabin (米勒-拉宾) 素性测试

    之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...

  6. NOIP2018普及组模拟赛

    向老师给的模拟赛,还没普及组难... 题目在洛谷团队里. 第一试三道水题,我46分钟就打完了,然后就AK了. 第二试一看,除了第二题要思考一段时间之外,还是比较水的,但是我得了Rank倒1,115分. ...

  7. java经典40+分析

      现在是3月份,也是每年开年企业公司招聘的高峰期,同时有许多的朋友也出来找工作.现在的招聘他们有时会给你出一套面试题或者智力测试题,也有的直接让你上机操作,写一段程序.算法的计算不乏出现,基于这个原 ...

  8. 数论基础算法总结(python版)

    /* Author: wsnpyo Update Date: 2014-11-16 Algorithm: 快速幂/Fermat, Solovay_Stassen, Miller-Rabin素性检验/E ...

  9. uva1614 Hell on the Markets

    贪心部分的理论依据:前i个数可以凑出1-sum[i]的所有整数. 证明:第二类数学归纳,n=1时成立,假设n=k之前所有项都成立,当n=k+1时.sum[k+1]=sum[k]+a[k+1].只需证明 ...

随机推荐

  1. idea类名下有红色波浪线

    能编译通过说明SDK导入正确,但是为啥我们点击每一个Java文件会出现好多红色的下划线 ,并提示idea cant resolve symbol 原因就是可能没有清除原来的历史缓存,导致一些错误,解决 ...

  2. SVN进行代码的托管

    svn 使用的是集中服务器 就是只有一个服务器的意思 git 是分布式服务器  服务器: 存储客户端上传的源代码. 可以在Windows上通过安装 Visual SVN Sever .  客户端: 上 ...

  3. bzoj 2251: [2010Beijing Wc]外星联络【SA】

    先求SA,然后按字典序从小到大枚举子串,每到一个后缀从长到短枚举子串(跳过长为he[i]的和前一段重复的子串),然后维护一个点p,保证i~p之间最小的he>=当前枚举长度,p是单调向右移的 然后 ...

  4. bzoj 4975: [Lydsy1708月赛]区间翻转【博弈论】

    必败状态是倒序排列,也就是正序对为0 然后发现,每次翻转都是有奇数个数对(\( C_{4x+2}^{2} C_{4x+3}^{2} \) 都是奇数),所以每次翻转丢回改变正反数对的奇偶性 又因为偶数为 ...

  5. bzoj 2565: 最长双回文串【manacher+线段树】

    因为我很愚蠢所以用了很愚蠢的O(nlogn)的manacher+线段树做法 就是开两个线段树mn和mx分别表示左端点在i的最长回文子串和右端点在i的最长回文子串 用manacher求出每个点的最长回文 ...

  6. asp.net实现服务器文件下载到本地

    1.说明 通过文件下载框实现将服务器上的文件下载到本地指定位置.这里需要指定服务器文件路径 try { string strFilePath = Server.MapPath("~" ...

  7. Centos 内存释放

    原因:最近发现服务器老师提示内存不足的警报,很多时候内存都占用百分之80以上,查看运行的服务似乎并没有占用很大的内存,top查看运行的服务,然后按shift+m排名第一的才百分之1.x,看了别人的博客 ...

  8. java sevlet Session

    * 如果浏览器支持Cookie,创建Session的时候会把SessionId保存在Cookie中 * 否则必须自己编程使用URL重写的方式实现Session:response.encodeURL()

  9. Jquery | 基础 | 慕课网 | 层级选择器

    选择器中的层级选择器处理关系类型: 子元素 后代元素 兄弟元素 相邻元素 <!DOCTYPE html> <html> <head> <meta http-e ...

  10. 跟我一起玩Win32开发(8):绘图(A)

    从本篇开始,我就不吹牛皮,那就吹吹兔皮吧.说说与绘图有关的东东. 要进行绘制,首先要得到一个DC,啥是DC呢?按字面翻译叫设备上下文,也可以翻译为设备描述表,它主要指API为我们封装了一些与显示设备相 ...