\(\\\)

\(\#A\) 车站


火车从第\(1\)站开出,上车的人数为\(a\),然后到达第\(2\)站,在第\(2\)站有人上、下车,但上、下车的人数相同,因此在第\(2\)站开出时(即在到达第\(3\)站之前)车上的人数保持为\(a\)人。从第\(3\)站起(包括第\(3\)站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到第\(n-1\)站,都满足此规律。

共有\(N\)个车站,始发站上车的人数为\(a\),最后一站下车的人数是\(m\)(全部下车),问\(x\)站开出时车上的人数。

  • \(a,n,x\in [1,20]\),\(m\in [1,2000]\)
  • 令\(fib_i\)表示第\(i\)项斐波那契数的值(从第一项开始),推推式子发现:

    • 第一站和第三站上车\(a\)人
    • 第二站增加\(0\)人,设上车\(b\)人
    • 第四站增加\(b\)人
    • \(5\text~n-1\)站中,第\(i\)站人数增量为\(fib_{i-4}-fib_{i-3}\)
  • 暴力累加到第\(n-1\)项,回代求出\(b\),在退回到第\(x\)次即可。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
#define R register
using namespace std; int a,n,m,x;
int ax=2,ay,ansx,ansy,fib[N]={0,1,1}; int main(){
scanf("%d%d%d%d",&a,&n,&m,&x);
if(x<=2){printf("%d\n",a);return 0;}
if(x==3){printf("%d\n",2*a);return 0;}
for(R int i=3;i<N;++i) fib[i]=fib[i-1]+fib[i-2];
for(R int i=4;i<n;++i){
ax+=fib[i-4]; ay+=fib[i-3];
if(i==x) ansx=ax,ansy=ay;
}
m-=ax*a; m/=ay;
printf("%d\n",ansx*a+ansy*m);
return 0;
}

\(\\\)

\(\#B\) 拼数


设有\(N\)个正整数,将它们联接成一排,组成一个最大的多位整数。

  • \(N\in [0,20]\)
  • 按字典序排序所有串即可,巧妙地实现方式可以通过字符串相加比较大小。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
string s[50];
bool cmp(string a,string b){
return a+b>b+a;
}
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)cin>>s[i];
sort(s+1,s+n+1,cmp);
for(int i=1;i<=n;i++) cout<<s[i];
printf("\n");
return 0;
}

\(\\\)

\(\# C\) 进制位


给出了如下的一张\(N\times N\)的加法表,表中的字母代表数字。 例如:

+    L    K    V    E
L L K V E
K K V E KL
V V E KL KK
E E KL KK KV

试求出每一个字母所代表数字及运算的进制。

  • \(N\in [0,9]\)
  • \(9!=362880\),并不会超时,所以直接通过搜索枚举每一个字母所代表数字,最后暴力验证即可。
  • 如果该表合法,则进制位必然为\(N-1\)进制,因为进位必定会产生\(1\),而\(1\)必定会累加出其他的数。
  • 验证时注意进位不能在十进制下进位,需要模拟\(N-1\)进制的进位过程。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
#define R register
#define gc getchar
using namespace std; char s[N][N][N]; bool vis[N],use[N]; int n,m,q[N],trs[N],len[N][N]; inline bool check(){
for(R int i=1;i<n;++i)
for(R int j=1;j<n;++j){
int x=0,y=0,z=0;
for(R int k=0;k<len[0][j];++k) x=x*10+trs[s[0][j][k]-'A'+1];
for(R int k=0;k<len[i][0];++k) y=y*10+trs[s[i][0][k]-'A'+1];
while(x||y){
z=z*10+(x%10+y%10)%(n-1);
z+=((x%10+y%10)>=n-1)?10:0;
x/=10; y/=10;
}
x=z; z=0;
for(R int k=0;k<len[i][j];++k) z=z*10+trs[s[i][j][k]-'A'+1];
if(x!=z) return 0;
}
return 1;
} inline bool dfs(int t){
if(t==q[0]+1){
if(check()){
for(R int i=1;i<n;++i)
printf("%c=%d ",s[0][i][0],trs[s[0][i][0]-'A'+1]);
printf("\n%d\n",n-1); return 1;
}
return 0;
}
for(R int i=0;i<n-1;++i)
if(!use[i]){
use[i]=1; trs[q[t]]=i;
if(dfs(t+1)) return 1;
use[i]=0; trs[q[t]]=0;
}
return 0;
}
int main(){
scanf("%d",&n);
for(R int i=0;i<n;++i)
for(R int j=0;j<n;++j){
scanf("%s",s[i][j]);
for(R int k=0;k<(int)strlen(s[i][j]);++k){
if(!isalpha(s[i][j][k])){len[i][j]=k;break;}
else vis[s[i][j][k]-'A'+1]=1;
}
if(!len[i][j]) len[i][j]=strlen(s[i][j]);
}
for(R int i=0;i<=27;++i) if(vis[i]) q[++q[0]]=i;
if(!dfs(1)) puts("ERROR!");
return 0;
}

[ NOIP 1998 ] TG的更多相关文章

  1. [NOIp 1998 提高组]Probelm 2 连接多位数【2011百度实习生笔试题】

    /*====================================================================== [NOIp 1998 提高组]Probelm 2 连接 ...

  2. [ NOIP 2014 ] TG

    \(\\\) \(Day\ 1\) \(\\\) \(\#\ A\) \(Rps\) 定义五种方案的石头剪刀布游戏,两人共进行\(N\)局游戏,已知两人各自的循环节和具体方案,胜者得\(1\)分,败者 ...

  3. noip 1998 洛谷P1013 进制位

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...

  4. [ NOIP 2008 ] TG

    \(\\\) \(\#A\) \(Word\) 给出一个长为\(N\)的小写字母串,判断出现所有字母中最多出现次数减最少出现次数得到的答案是否是质数. \(N\in [1,100]\) 直接按题意开桶 ...

  5. [ NOIP 2002 ] TG

    \(\\\) \(\#A\) 均分纸牌 有\(N\)堆纸牌,每堆有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动给其左右任意一侧的纸牌堆,求将所有的牌堆牌数都变为平均值最 ...

  6. [ NOIP 2009 ] TG

    \(\\\) \(\#A\) \(Spy\) 给出两个长度均为\(N\)相同的样例串,建立第一个串各个字符向第二个串对应位置字符的映射,并用映射转换给出的长度为\(M\)第三个串,输入保证只有大写字符 ...

  7. vijos 1772 巧妙填数

    描述 将1,2,\cdots,91,2,⋯,9共99个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:31:2:3的比例. 试求出所有满足条件的三个三位数.例如:三个三位数192,384, ...

  8. 洛谷P1010 幂次方

    题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137137可表示为: 2(7)+2(3)+2( ...

  9. 洛谷——V1772 巧妙填数

    描述 将1,2,\cdots,91,2,⋯,9共99个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:31:2:3的比例. 试求出所有满足条件的三个三位数.例如:三个三位数192,384, ...

随机推荐

  1. [luoguP1316] 丢瓶盖(二分答案)

    传送门 二分答案再判断即可 ——代码 #include <cstdio> #include <iostream> #include <algorithm> #def ...

  2. centos7 安装mongodb3.4 及用户管理

    https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/1.semanage command not found yum ...

  3. C. Star sky 二维前缀和

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  4. [kuangbin带你飞]专题五 并查集 A - Wireless Network

    An earthquake takes place in Southeast Asia. The ACM (Asia Cooperated Medical team) have set up a wi ...

  5. Ubuntu 16.04在启动和关机时不显示启动和关机画面且显示详细的命令信息,没有进度条和Logo,或者只有紫色界面,或者没有开机画面等问题解决

    主要有以下解决方法: 1.如果之前配置过Grub来显示详细的命令信息的,那么改回去就行了,参考:http://www.cnblogs.com/EasonJim/p/7129873.html,通过这种方 ...

  6. Ubuntu下的软件一般安装在哪个文件夹里

    一般安装在/usr下,里面很多文件夹,根据文件的类型,分门别类,不是一个软件一个文件夹.以前老版本的Linux习惯放在/usr/local目录下. 部分软件放在/opt下,则是一个软件统一在一个文件夹 ...

  7. memory management in oracle 11G R2

    When we talking about memory management in Oracle, we are refering to SGA and PGA. The management me ...

  8. _deque实现

    /* deque是一种双向开口的连续线性空间,可以在头尾两端分别做元素的插入和删除操作 常用接口:back(), front(), push_back(), pop_back(), push_fron ...

  9. 使用NDIS驱动监測以太网络活动

    转载自: http://blog.csdn.net/ddtpower/article/details/656687   本论文提供了NDIS的主要的理解,应用程序怎样与驱动程序交互.发挥驱动程序最佳性 ...

  10. 配置远程连接mysql数据库 Connect to remote mysql database

    设有本地机器(local machine), ip地址为localip 远程机器(remote machine), ip地址remoteip 要通过在local machine的终端连接remote ...