其实有原题,生成树计数

然鹅这题里面是两道题, 50pts 可以用上面那题的做法直接过掉,另外 50pts 要推推式子,搞出 O n 的做法才行(毕竟多项式常数之大您是知道的)

虽说这道题里面是没有 a_i 的,也不用分治合并多项式的就是了,所以大致思路看我另一题的题解就好了,这里对于前 50pts 的做法只给出式子:

\[ANS_n= {(n-2)! \Big( [x^{n-2}] \big(\sum_{i=0}^\infty (i+1) ^m {x^i \over i! } \big)^n \Big)\over n^{n-2}}
\]

我们先康康我们原本要求的多项式变成了什么:

\[[x^{n-2}] \big(\sum_{i=0}^\infty (i+1) {x^i\over i!} \big)^n
\]

然后我们就考虑转成 EXP 咯

\[\begin{aligned} &[x^{n-2}]\Big(\sum_{i=0}^\infty (i+1) {x^i\over i!} \Big)^n\\=& [x^{n-2}]\Big(e^x(x+1)\Big)^n \\=&[x^{n-2}] e^{nx}·(x+1)^n \\=& \sum_{i=2}^{n} {n^{i-2}\over (i-2)!} ·{n!\over (n-i)!· i!} \end{aligned}
\]

注意,这里乱转 EXP 的时候千万要记得运算,不然就像我一样多加了一个 -x 然后死都化不出来了

然后咱预处理完 阶乘 及其 逆元 就可以 O n 出解了

//by Judge
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define ll long long
using namespace std;
const int mod=998244353;
const int iG=332748118;
const int M=5e6+3;
typedef int arr[M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int inc(int x,int y){return (x+=y)>=mod?x-mod:x;}
inline int dec(int x,int y){return (x-=y)<0?x+mod:x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} int n,m,res,limit; arr fac,finv,A,B,C,r;
inline int qpow(Rg int x,Rg int p=mod-2,int s=1){
for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;
}
inline void init(int n){ int l=-1;
for(limit=1;limit<n;limit<<=1)++l;
fp(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
inline void NTT(int* a,int tp){
fp(i,0,limit-1) if(i<r[i]) swap(a[i],a[r[i]]);
for(Rg int mid=1;mid<limit;mid<<=1){
int Gn=qpow(tp?3:iG,(mod-1)/(mid<<1));
for(Rg int j=0,I=mid<<1,x,y;j<limit;j+=I)
for(Rg int k=0,g=1;k<mid;++k,g=mul(g,Gn))
x=a[j+k],y=mul(a[j+k+mid],g),
a[j+k]=(x+y)%mod,a[j+k+mid]=(x-y+mod)%mod;
} if(tp) return; int inv=qpow(limit);
fp(i,0,limit-1) a[i]=mul(a[i],inv);
}
void Inv(int* a,int* b,int n){ static arr C,D;
if(n==1) return b[0]=qpow(a[0]),void();
Inv(a,b,n>>1),init(n<<1);
fp(i,0,n-1) C[i]=a[i],D[i]=b[i];
fp(i,n,limit-1) C[i]=D[i]=0; NTT(C,1),NTT(D,1);
fp(i,0,limit-1) C[i]=mul(C[i],mul(D[i],D[i]));
NTT(C,0); fp(i,n,limit-1) b[i]=0;
fp(i,0,n-1) b[i]=dec(inc(b[i],b[i]),C[i]);
}
inline void Direv(int* a,int* b,int n){
fp(i,1,n-1) b[i-1]=mul(a[i],i); b[n-1]=0;
}
inline void Inter(int* a,int* b,int n){
fp(i,1,n-1) b[i]=mul(a[i-1],qpow(i)); b[0]=0;
}
void Ln(int* a,int* b,int n){ static arr C,D;
Inv(a,C,n),Direv(a,D,n),init(n<<1);
fp(i,n,limit-1) C[i]=D[i]=0; NTT(C,1),NTT(D,1);
fp(i,0,limit-1) C[i]=mul(C[i],D[i]); NTT(C,0),Inter(C,b,n);
}
void Exp(int* a,int* b,int n){
if(n==1) return b[0]=1,void(); static arr B;
Exp(a,b,n>>1),Ln(b,B,n),B[0]=dec(a[0]+1,B[0]); init(n<<1);
fp(i,1,n-1) B[i]=dec(a[i],B[i]); fp(i,n,limit-1) B[i]=0;
NTT(B,1),NTT(b,1); fp(i,0,limit-1) b[i]=mul(b[i],B[i]);
NTT(b,0); fp(i,n,limit-1) b[i]=B[i]=0;
}
int main(){
/// pre calc
n=2e6,fac[0]=finv[0]=finv[1]=1;
fp(i,1,n) fac[i]=mul(fac[i-1],i);
fp(i,2,n) finv[i]=mul(mod-mod/i,finv[mod%i]);
fp(i,2,n) finv[i]=mul(finv[i-1],finv[i]);
fp(Stp,1,read()){ n=read(),m=read();
Rg int len=1; while(len<=n) len<<=1;
if(m==1){
Rg int x=1,ans=0;
fp(i,2,n) ans=inc(ans,mul(x,mul(fac[n],mul(finv[i-2],mul(finv[n-i],finv[i]))))),x=mul(x,n);
printf("%d\n",mul(mul(fac[n-2],ans),qpow(qpow(n,n-2))));
} else{
fp(i,0,n) A[i]=mul(qpow(i+1,m),finv[i]); Ln(A,B,len);
fp(i,0,n) B[i]=mul(B[i],n),A[i]=0; Exp(B,A,len);
printf("%d\n",mul(mul(fac[n-2],A[n-2]),qpow(qpow(n,n-2))));
memset(A,0,(len+2)<<3);
}
} return 0;
}

codechef : TREDEG , Trees and Degrees的更多相关文章

  1. Codechef Dynamic Trees and Queries

    Home » Practice(Hard) » Dynamic Trees and Queries Problem Code: ANUDTQSubmit https://www.codechef.co ...

  2. Codechef December Challenge 2014 Chef and Apple Trees 水题

    Chef and Apple Trees Chef loves to prepare delicious dishes. This time, Chef has decided to prepare ...

  3. codechef FUN WITH TREES

    题目大意: 给一棵树root=1的树: 给一些操作:u  v 的路径所有节点的node + val: 最后m个询问:u 节点(包括u) sum%mod 是多少. LCA + RMQ: 我们每次mark ...

  4. 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)

    点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...

  5. codechef营养题 第二弹

    第二弾が始まる! codechef problems 第二弹 一.Backup Functions 题面 One unavoidable problem with running a restaura ...

  6. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  7. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  8. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

随机推荐

  1. MBP 2018 & Mac keyboard shortcuts

    MBP 2018 & Mac keyboard shortcuts https://support.apple.com/en-us/HT201236 delete key === Contro ...

  2. Reactor Cooling(无源汇有上下界网络流)

    194. Reactor Cooling time limit per test: 0.5 sec. memory limit per test: 65536 KB input: standard o ...

  3. 【HDOJ6146】Pokémon GO(DP,计数)

    题意:一个2*n的矩阵,从任意一格出发,不重复且不遗漏地走遍所有格子,问方案数 mo 10^9+7 n<=10000 思路:因为OEIS搜出来的两个数列都是错误的,所以考虑DP 设B[i]为2* ...

  4. Git Cheat Sheet 中文版

    Git Cheat Sheet 中文版 索引 配置 配置文件 创建 本地修改 搜索 提交历史 分支与标签 更新与发布 合并与重置 撤销 Git Flow 配置 列出当前配置: $ git config ...

  5. 51nod - 1278 相离的圆 (二分)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 因为圆心都在x轴上,把每个圆转化成线段后,按线段的起点排序,那么对 ...

  6. ZOJ 2770_Burn the Linked Camp

    题意: 给定每个兵营的最大容量,以及第i到第j个兵营至少有多少个士兵,问所有兵营一共至少有多少个士兵? 分析: 差分约束系统,注意 第i到第j至少有k个 第i到第j最多有最大容量之和个 每个兵营至少有 ...

  7. nodejs window下安装与配置淘宝镜像

    1,前往nodejs官网下载安装软件,地址:https://nodejs.org/en/ 2,点击下一步继续安装,安装完成,在命令输入:node -v,npm -v,查看版本,即是安装成功 3,随便在 ...

  8. struts1与struts2的差别

     Struts 2是Struts的下一代产品,是在 struts 1和WebWork的技术基础上进行了合并的全新的Struts 2框架.其全新的Struts 2的体系结构与Struts 1的体系结 ...

  9. 【Linux多线程】同步与互斥的区别

    同步与互斥这两个概念经常被混淆,所以在这里说一下它们的区别. 一.同步与互斥的区别 1. 同步 同步,又称直接制约关系,是指多个线程(或进程)为了合作完成任务,必须严格按照规定的 某种先后次序来运行. ...

  10. Android 5.1 Settings源代码简要分析

    转载请注明出处,谢谢~http://blog.csdn.net/u011974987/article/details/51004854. 概述: 先声明:本人工作快两年了,仍是菜鸟级别的.羞愧啊!曾经 ...